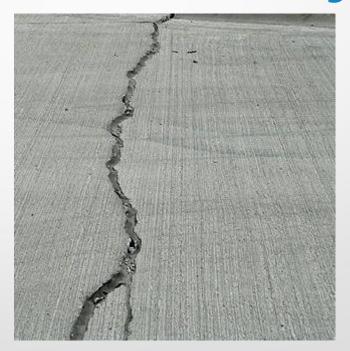

Sawing and Sealing Basics

Scott Eilken
Owner- Quality Saw and Seal, Inc.


Why Do We Make and Seal Joints

To Control Cracking

Controlled Cracking

Uncontrolled Cracking

Types of Saw Cuts

Initial Saw Cut

Reservoir Cut

Is Sealant Cost Effective?

FHWA Sealant Effectiveness Study

TechBrief

The Concrete Pavement Technology Program (CPTP) is an integrated, national effort to improve the long-term performance and cost-effectiveness of concrete povements. Managed by the Foddrail Highway Administration through partmethips with State highway agencies, industry, and academia, CPTP's primary goals are to reduce congestion, improve safety, tower costs, improve performance, and foster innovation. The program was designed to produce user-i landly software procedures, methods, guidelis, and other tools for use in materials selection, mixture proportioning, and the design, construction, and rehabilitation of concrete powements.

www.selfeva.doi.gov/pavement/concrete

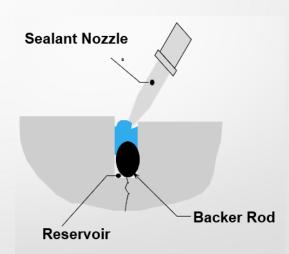
Performance of Sealed and Unsealed Concrete Payement Joints

This TechBrief presents the results of a nationwide study of the effects of transversjoint sealing on performance of jointed plain concrete powernent (JPCP). This stud, was conducted to assess whether JPCP designs with unsealed transverse joints. Distress and deflection data were collected from 117 test sections at 26 experimental joint seal ing projects to cated in 11 states. Performance of the powernent test sections with unsealed joints was compared with the performance of powernent test sections we one or more types of sealed joints.

BACKGROUN

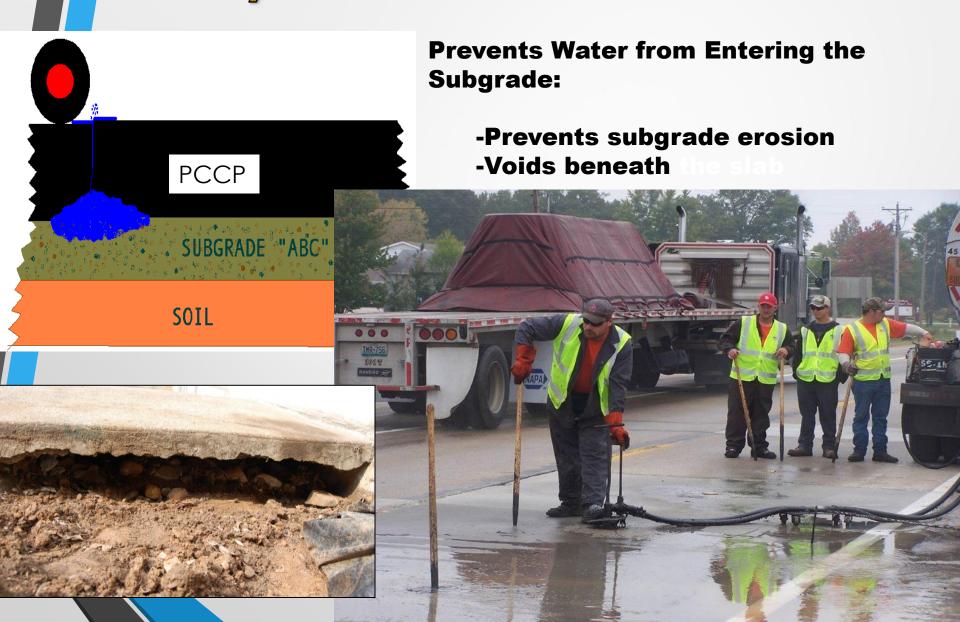
traction joints in JPCP has been standard pt out much of the tted States for many years. Its widespread common belief t sealing joints improves concrete pavem in two ways: by lucing water infiltration into the pavem eby reducing th ccurrence of moisture-related distresses su Sulting by preventing the infiltration of incompre stones) into the joints, thereby reducing the lik sure-related joint distresses such as joint spalling and blowur. oints in jointed concrete pavement (JCP) are typically crea by making a ... nitial saw cut to force controlled cracking, followed by a s ond, wider saw cut to produce a reservoir for the joint sealant material. I ditional approach of sawing and sealing transverse contraction joint mated to account for between 2 and 7 percent of the initial construct cost of a JCP. Moreover, these sealed transverse joints require resealing (or more times over the service life of the pavement, leading to additio costs in terms of labor, materials, operations, and lane closures.

Recently, several State departments of transportation (DOTs) have be questioning conventional transverse joint sawing and sealing practices. The agencies contend that the benefits derived from sealing do not offset the α associated with the placement and continued upkeep of the sealant over life of the pavement. As a result, they have been experimenting with different sawing and sealing alternatives, for example:


- Narrow unsealed joints, consisting of single saw cuts that are left unsealed.
- Narrow filled joints, consisting of single saw cuts that are filled with sealant that adheres to the sides and bottom of the saw cut.
- Narrow sealed joints, consisting of single saw cuts that contain a narrow backer rod and sealant material.

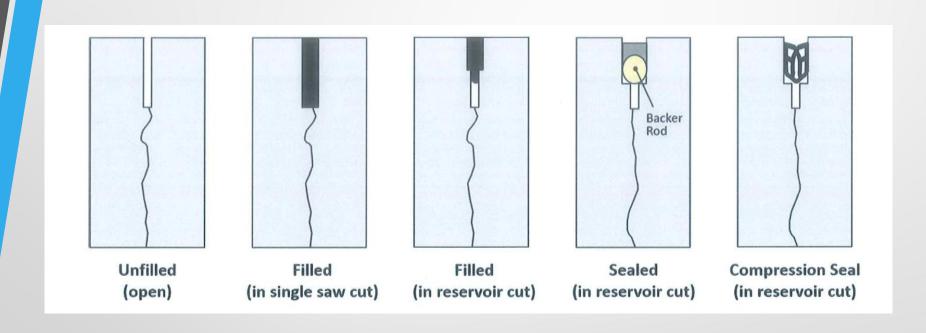
AASHTO New Design Guide

Benefits of Joint Sealing


- Minimizes Water & Incompressibles into Pavement System
- Reduces Subgrade Softening,
 Pumping and Erosion of Fines and Spalling
- Prevents Joint Associated Distress?
- Extends Pavement Performance

Why Seal Joints and Cracks

Why Seal Joints and Cracks


The Top Doesn't Always Tell the Story

Joint Seal System Design Does the traditional sealant configuration really keep water out of joints) Edge of Pavement Transverse Sealant **AC** Longitudinal Shoulder Joint

How Do You Design the Joint Sealant System

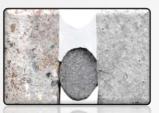
Reservoir Design and Cutting

How Does Vertical Load Impact Sealant Performance

Good for Hot Pour Bad For Silicone

Good for Silicone
OK For Hot Pour

Bad For Silicone

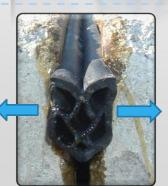


Ton, E., "Factors in Joint Seal Design, "Highway Research Record No. 80, Highway Research Board, National Research Council, 1965

Sealant Types

Silicone

Non Sag
Self Leveling
Rapid Cure


Hot Pour

Standard Modulus
Low Modulus

Compression Seal

Allowable Joint Opening Movements (Compression/Extension)

- Hot Pour Sealants: 25% Extension
- Silicone Sealants: 50% Compression to 100% Extension
- Compression Seals: 15% min
 Compression to 50% Extension

Maximum Joint Movement and Sealant Elongation Estimator

Description

This web applet, based on the total free strain calculations from the research report "A Mechanistic-Empirical Tie Bar Design Approach for Concrete Pavements," allows you to estimate the maximum amount you should expect cracks beneath sawcuts in doweled or undoweled transverse joints of in jointed plain (JPCP) or jointed reinforced concrete pavement (JRCP) to open due to the variables used as inputs here. This maximum joint movement estimate is useful when selecting suitable sealants for your planned or specified joint width.

Terms of Use

The user accepts ALL responsibility for decisions made as a result of the use of this design tool. American Concrete Pavement Association, its Officers, Board of Directors and Staff are absolved of any responsibility for any decisions made as a result of your use. Use of this design tool implies acceptance of the terms of use.

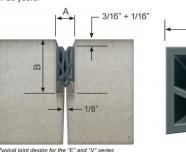
http://www.apps.acpa.org/apps/ JointMovement_aspx

State:	Sele	Select State 🗸			
Location:	Sele	ct Location	~		
Concrete Mater	ial Details				
Cement Type:		Select Type	•		
Cementitious Materials	Content (lb/yd ³):				
Coefficient of Thermal E Concrete Pavel Concrete Pavement Thi	expansion (10 ⁻⁶ /º)	-):			
Coefficient of Thermal B	ment Structu	-):			
Concrete Paven	ment Structuckness (in.):	-):			
Coefficient of Thermal E Concrete Paver Concrete Pavement Thi Transverse Joint Spacing	ment Structuckness (in.): g (ft):	-):			

Manufacturer Design Tables Silicone and Compression Seal

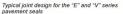
3/4"

3/8"


*Joint Width	1/4"	3/8"	1/2"	5/8"
Minimum Sealant Recess	1/4"	1/4"	5/16"	5/16"
Backer Rod Diameter ¹	3/8"	1/2"	5/8"	3/4"
Sealant Bead Thickness	1/4"	1/4"	1/4"	5/16'
Minimum Joint Saw/Reservoir Depth	1 1/8"	1 1/4"	1 1/2"	1 3/4
Minimum Backer Rod Depth	1/2"	1/2"	5/8"	11/16
Estimated Usage Non- Sag	245	149	112	70
Estimated Usage Self-leveling(ft./gal)	273	172	130	82

Meeting Specifications

Delastic® Preformed Pavement Seals meet ASTM standard specifications. They are also recognized by the FHWA, U.S. Army Corps of Engineers, the U.S. Air Force, the FAA, consulting engineers and other agencies as an effective, long-lasting concrete pavement joint seal solution.


3/8"

Delastic® Preformed Pavement Seals have been successfully used on high performance concrete payements throughout the U.S. Many of these installations have protected pavements located in extreme hot and cold climates in excess of 20 years.

7/8"

3/8"

1/2"

1/2"

1 3/8"

1/2"

Airports, including military bases all over the world rely on Delastic® Preformed Pavement Seals.

40-year-old Preformed Compression Seal at DFW

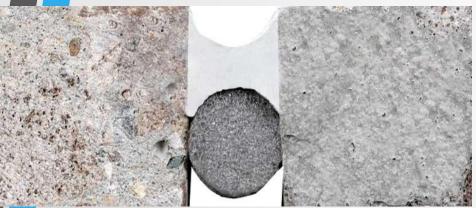
Delastic® Preformed Pavement Seal Characteristics

Delastic*	S	Seal Characteristic	:S	Jo				
Seal Catalog No.	Nominal Width (W)	Nominal Height (H)	Max. Movement ¹	Narrowest Opening ²	Widest Opening ³	Minimum Depth (B)	Typical Installed Width (A)**	
E-437	0.437 (11.11)	0.937 (23.81)	0.153 (3.88)	0.219 (5.56)	0.372 (9.45)	1.000 (25.40)	0.250 (6.35)	
E-562	0.562 (14.29)	0.625 (15.88)	0.188 (4.78)	0.290 (7.37)	0.478 (12.14)	1.063 (27.00)	0.3125 (7.94)	
E-686	0.687 (17.46)	0.687 (17.46)	0.259 (6.59)	0.325 (8.26)	0.584 (14.84)	1.188 (30.18)	0.375 (9.53)	
E-816	0.812 (20.64)	0.830 (21.08)	0.313 (7.95)	0.378 (9.59)	0.691 (17.54)	1.438 (36.53)	0.500 (12.70)	
E-1006	1.000 (25.40)	1.000 (25.40)	0.450 (11.43)	0.400 (10.16)	0.850 (21.59)	1.625 (41.28)	0.500-0.5625 (12.70-14.29	
E-1256	1.250 (31.75)	1.000 (25.40)	0.563 (14.30)	0.500 (12.69)	1.063 (26.99)	1.875 (47.63)	0.750 (19.05)	
V-1625	1.625 (41.28)	1.125 (28.58)	0.631 (16.03)	0.750 (19.05)	1.381 (35.08)	2.250 (57.15)	0.875 (22.23)	
E-2000	2.000 (50.80)	1.500 (38.10)	0.950 (24.13)	0.750 (19.05)	1.700 (43.18)	2.500 (63.50)	1.125 (28.58)	
E-2500	2.500 (63.50)	2.500 (63.50)	1.125 (28.58)	1.000 (25.40)	2.125 (53.98)	3.375 (85.73)	1.375 (34.93)	
E-3000	3.000 (76.20)	2.500 (63.50)	1.550 (39.37)	1.000 (25.40)	2.550 (64.77)	4.000 (101.60)	1.750 (44.45)	

1 1/8"

1/2"

1 1/4"

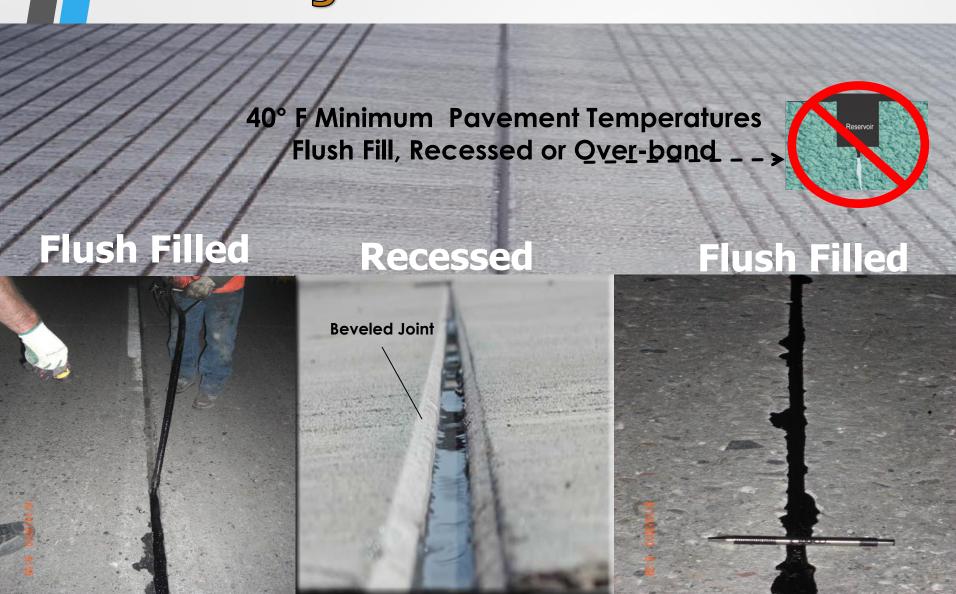

1/2"

Above: First number shown in bold represents inches, metric dimensions (mm) are shown in parentheses. Notes: *Thickness of the seal wall and internal web are not drawn to scale, 1 Maximum movement which seal will accommodate in joint with correct design, 2 A narrower opening will place excessive stress on the seal and may cause premature failure. 3 A wider opening may not provide sufficient compressive force to hold the seal in place.** To be used as reference only. Installed width may vary by project.

Silicone Joint Sealant Configuration

Non-Sag

Self-Leveling



- 1. Recess min 1/4"- 3/8" Below Surface
- 2.2 to 1 Ratio
- 3. Tooling Required

Hot Pour Joint Sealant Configuration

Shipping And Storing Materials

Asphalt Hot Pour Joint/crack Sealants

•ASTM D-6690:

Type I - ASTM **D1190**

Type II - ASTM D3405

Type III – Low Modulus

Type IV - Fed Spec SS-S-1401C

FAA P 605-ASTM D-6690

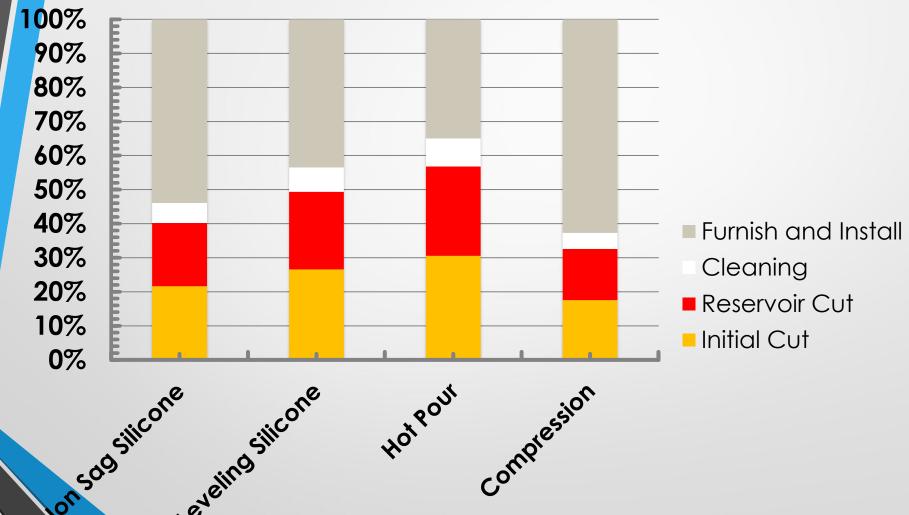
State Specifications

SILICONE PACKAGING

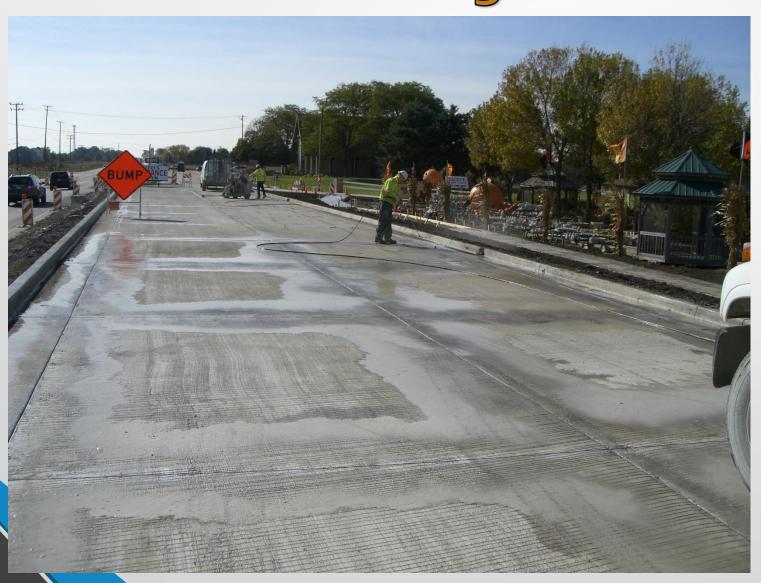
- Drums-50 gals of Material
- 5 Gallon Pails
- 29 oz. Tubes (6 per case)
- Store out of direct sun

Do not store in freezing temperatures or above 90°F.

Keep out of excessive humidity


How Are Materials Tested?

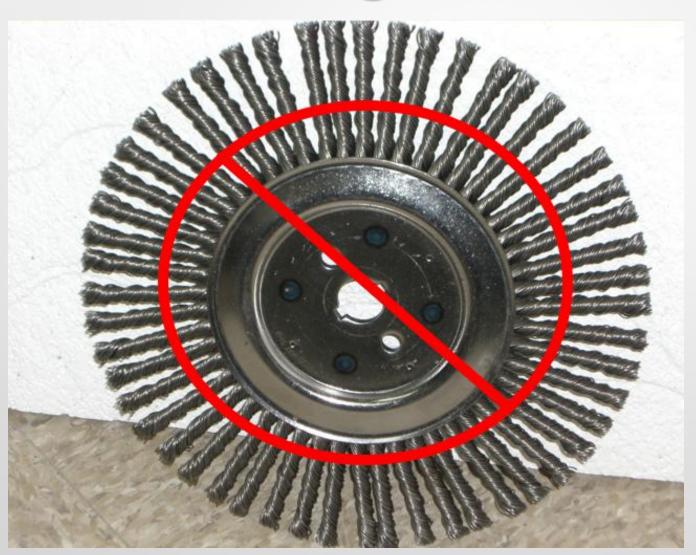
- Certification
- Owner Laboratory
- Outsourced Testing

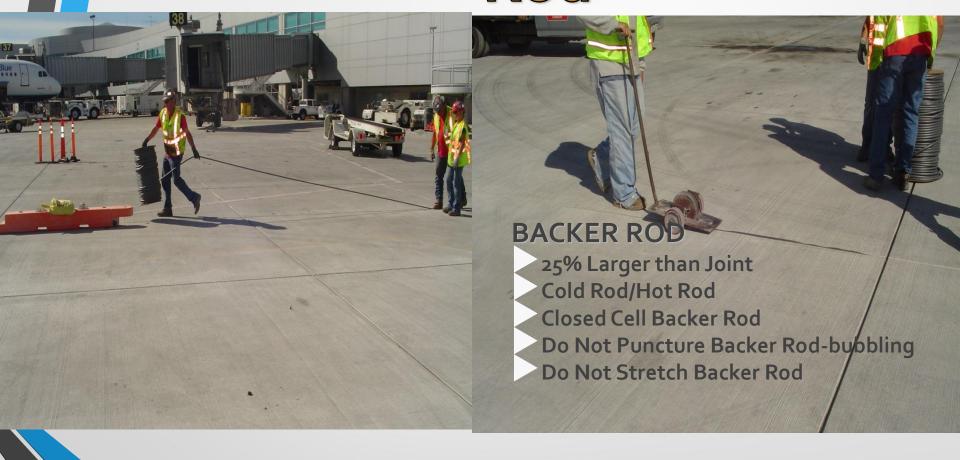


Joint Sealant Installation

Percent of Total Cost For Each Operation of Sealing a Joint*

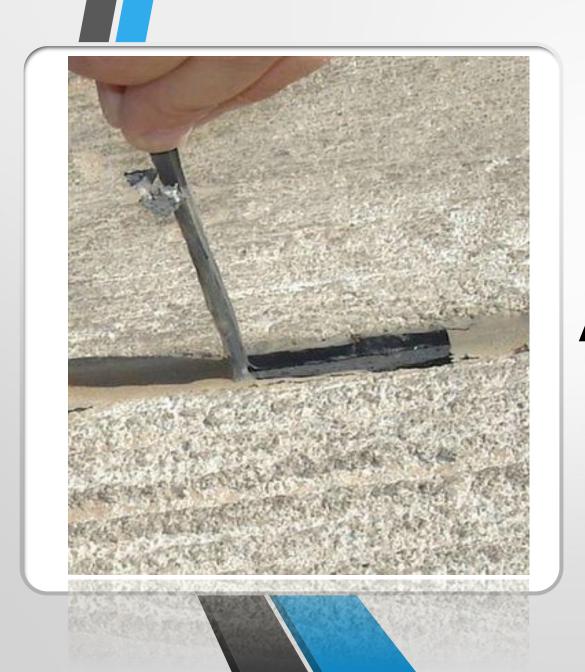
Power Washing After Green Sawing

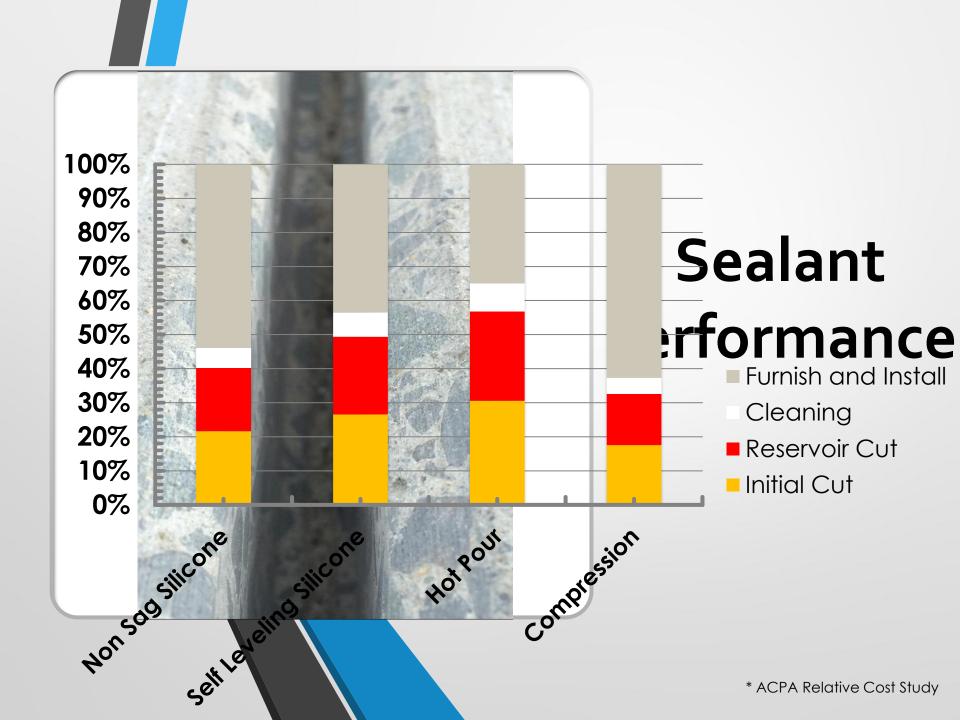

Media Blasting


Personal Protective Equipment

No Cleaning Brushes!

Inserting and Rolling Backer Rod


Installing Sealant


Compression Seal Installation

- Lubricant-Adhesive shall meet ASTM D2835
- Installation Above 32 F
- Install Sealant in Longitudinal Joint First
- Cut Longitudinal Joint in Center of Each Transverse Joint
- Install Transverse Joint Continuously Across
- Sealant Stretch Should be Less than 4 %
- Recess Sealant 3/16"

Sealant Acceptance

Defining Sealant Life

LTPP Pavement Maintenance

Materials: SHRP Joint Reseal

Experiment, Final Report

PUBLICATION NO. FHWA-RD-99-142

EPTEMBER 199

Crafco 221 = 5.4 - 9.8 yrs Crafco 231 = 6.4 - 9.5 yrs Dow 888 SL = 12.8 yrs Dow 888 = 13.9

232% to 348% Increase for Silicone

US Department of Transportation Federal Highway Administration

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296

		Time at Which 75% Effectiveness Level Was Reached, months						
Sealant Material	Config- uration	Arizona	Colorado	Iowa	Kentucky	South Carolina	Average	
Koch 9005	1	116	66	94	156	63	99	
	2	112	66	91	191	90	110	
	3	THE COURT OF	NO MENT	148	182	49	126	
	4	105	61				83	
Crafco	1	52	80	76	86	92	77	
RS 231	2	135	69	118	108	138	114	
	3		ES TESTINET	103	155	80	113	
	4	83	72		and the second		78	
Meadows	1		34	40	39	55	42	
Sof-Seal	2		40	51	64	46	50	
	3	ana and the		57	161	31	83	
	4		43				43	
Koch 9030	1		31	50	60	41	46	
	2		32	63	50	58	51	
	3			59	143	15	72	
	4		37				37	
Meadows	1	43	CHO NEDEN				43	
Hi-Spec	2	94	BIOLEGE DAY	DESCRIP			94	
111111111111111111111111111111111111111	4	76	TURNING H				76	
Crafco	1	65			Constitution of		65	
RS 221	2	105	College College	CHEROSE.	EUROSE DE S	risings (Chi	105	
1072700	4	117	THE PERSON NAMED IN	Ordinal-		CHECKS	117	
Dow 888	1	198	145	130	186	178	167	
Dow 888-SL	1	183	110	125	164	186	154	
Mobay 960-SL	1	194	93	65	115	168	127	
Mobay 960	1			143		A POSITIVE	143	
Crafco 903-SL	1	194					194	
Koch 9050	1		19	SHE SELLE	136		78	
Dow 888 w/ primer	1			151			151	
Dow 888-SL w/ primer	1		No.	143			143	
Koch 9005 w/primer	1				173	なりをかり	173	

Times greater than 82 months are extrapolated to a maximum of 200 months.

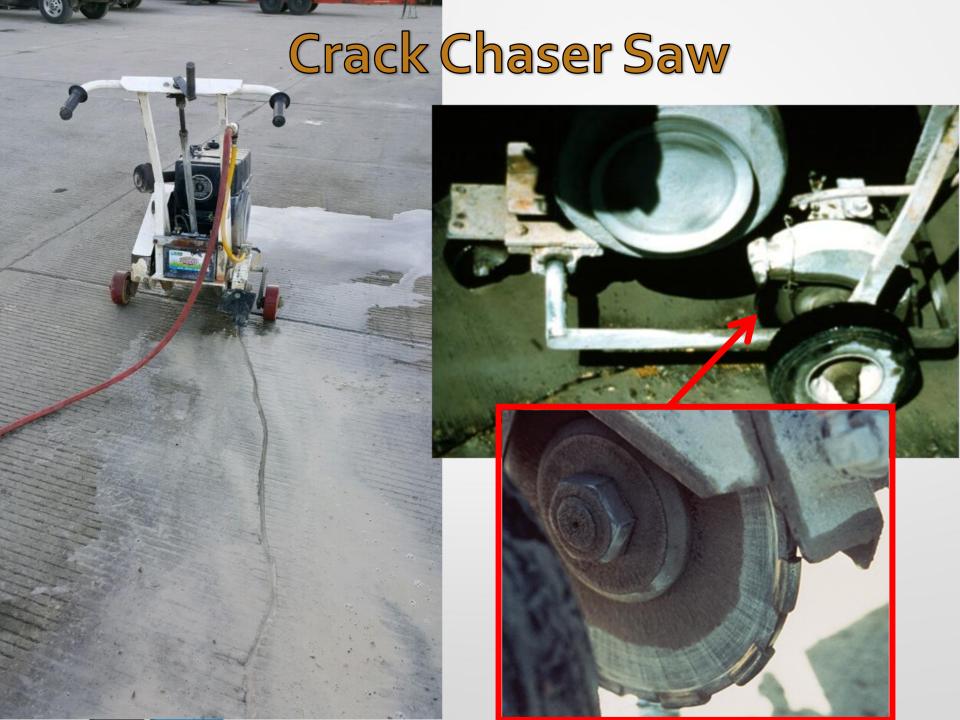
20 Year Old Hot Pour Sealant

Can We Seal a Joint?

20 Years Old

1 Year Old

When to Reseal & Sealant Longevity


Adhesive Failures

Cohesive Failures

% Damaged or Missing

When the Sealant is No Longer Serving its Intended Function

What Happens When the Plate is

Summary

- Design Joint Sealant System for the Expected Joint Movements
- Select a Joint Sealant Material and Backer Rod Appropriate for the Intended Purpose
- Ensure Proper Cleaning and Preparation—Clean, Dry and Bondable
- Inspect the Work and Verify its

 Acceptability

Tech Brief

Proper Joint Preparation Prior to Sealing and Resealing Concrete Joints

Introduction

To seal or not to seal has been a strongly debated question for more than a quarter century. This debate has continued due to the variable performance of installed sealants and the inability to relate sealant condition to pavement performance.

Joint sealing has been a process in constructing concrete pavements for over a hundred years, yet the challenge of quality installation continues. With the introduction of the OSHA PM10 regulations (29 CFR 1926.1153), this challenge has become even greater with the need to ensure environmental worker safety.

The cost of cleaning joints amounts to about 5% to 8% of the total installed sealant cost; however, if done correctly, it can significantly increase sealant performance life¹. Quality of installation may be the single most important factor in sealant performance.

The purpose of joint sealing is to reduce the amount of water entering a pavement structure and to prevent the filling of joints with incompressible materials. Water entering a pavement structure through joints can lead to pumping, faulting, base and subbase erosion, and loss of support. Unsealed joints also allow the introduction of deicing chemicals and other contaminants. Incompressible materials filling pavement joints can result in joint spalling, blowups/buckling, or shattered slabs.²

Independent of the type of sealant, or final joint configuration, the following steps should be used to ensure proper joint preparation prior to sealing and resealing operations.

- Power wash joint immediately after "final" sawing
- Media blast joint faces followed by air blowing joints prior to sealant installation
- Visually check for cleanliness and moisture to approve workmanship
 See RTU 17.01-2017 Wikipave.org
- Air blow joints again, just before backer rod and sealant Installation

Narrow joints are generally more difficult to clean and should be at least 3/16 inch minimum in width and preferably a minimum of 1/4 inch. (See SNS Tech Brief on Narrow Joints¹).

Although some specifications indicate that a separate pass for each side of the joint should be made, for narrow joints, a single pass with an alignment nozzle has been successfully used¹ (see Figure 1). The alignment tool directs

July 2024

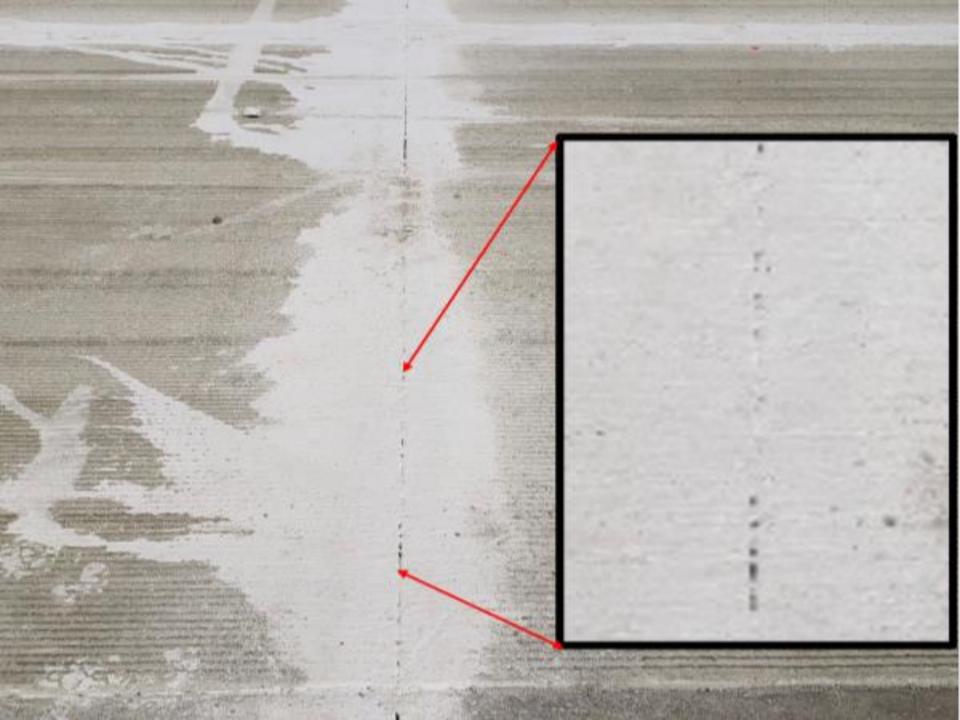

www.sealnoseal.org

Figure 1 Media Blast Alignment Fixture

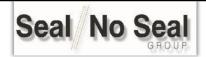


Figure 2 Incompressibles Accumulating in Joint During Construction

Tech Brief

The Use of Vacuums to Clean Sawed Pavement Joints

Introduction

Sawing joints in concrete pavements potentially exposes workers to respirable crystalline silica dust which may increase the risk of health issues. OSHA has standards designed to protect workers from these risks: Respirable Crystalline Silica Standard (29 CFR 1926.1153) and Respiratory Protection Standard (29 CFR 1910.134) among others ^{1,2,3}.

This Tech Brief is not intended to address the health risks, but instead to provide information on devices which can be used to minimize them. Specifically, the use of vacuum equipment to extract slurry residue from the pavement surface and partially the joint.

Figure 1 Safety Warnings

Wet Sawing Vacuum Equipment

When properly conducted, wet sawing is acceptable under OSHA standards. However, once the slurry dries, it can become a problem if excessive amounts remain and there is a mechanism such as traffic or wind to make it airborne. In these situations, it may be desirable to use a vacuum during the sawing operation. Figure 1 is a photo of a contractor constructed vacuum system for wet sawing.

It should be noted that the equipment used for vacuuming wet sawing is different than that used for early entry sawing. In Figure 1, the slurry recovery tank can be seen in the upper right-hand corner of the photo. The slurry tank allows the vacuum to work continuously until the tank is full. No filters are involved in the retrieval process.

Vacuuming of joints is more common on airfield construction than on highway construction. Figure 2 indicates the cleaned joint after power washing and vacuuming.

Figure 1 Photo of Wet Saw Vacuum Pickup Equipment

August 2024 www.sealnoseal.org

Figure 2 Photo of Wet Saw Joint Condition
After Power Washing and Vacuuming

Early Entry Saw Vacuum Equipment

Similar to wet sawing, if done properly, early entry sawing is acceptable under OSHA standards. However, Figure 3 indicates the remains from an early entry sawing operation without vacuuming. Obviously, based on environmental and traffic conditions at a given site, the dried slurry may pose a problem.

Figure 3 Photo of Concrete Remains from Early Entry Sawing without Vacuuming

Figure 4 is a photo of commercial vacuum equipment designed for early entry sawing. Note that this type of equipment uses HEPA filters that need to be cleaned out several times during a work shift to keep them functioning properly. Note also that there is a need for a second person to push the vacuum as with the wet saw vacuuming.

Figure 4 Photo of Early Entry Saw Vacuum
Pickup Equipment

Figure 5 Photo of Early Entry Saw Joint With Vacuum Attachment

References

- OSHA Fact Sheet, "OSHA's Respirable Crystalline Silica Standard for Construction", Occupational Safety and Health Organization, 2017
- OSHA Fact Sheet, "Control of Silica Dust in Construction Walk-behind Saws", Occupational Safety and Health Organization, 2017
- 3. www.osha.gov/silica

August 2024 www.sealnoseal.org

Tech Brief

Filling Narrow Joints in Concrete Pavements

Introduction

Traditionally, sealing joints requires a specific sealant shape factor, backer rod, and reservoir cut. The reservoir cut is typically ¼" to 3/8" wide for highway applications. Sealant materials include hot pour, silicone, or compression seal (which does not use a backer rod).

In recent times, filling of narrow joints in concrete pavements has become more common. With this increased interest, it is important to understand the procedures and materials necessary to provide quality installations and acceptable performance.

Width of Initial Saw Cut

It is not possible to successfully install hot pour sealant in a 1/8" sawn joint. The product does not penetrate sufficiently into the joint as indicated in Figure 1. The volume of hot pour being placed is small, so it is difficult to control and often results in excess material on the surface.

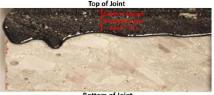


Figure 1 Hot Pour Penetration Depth

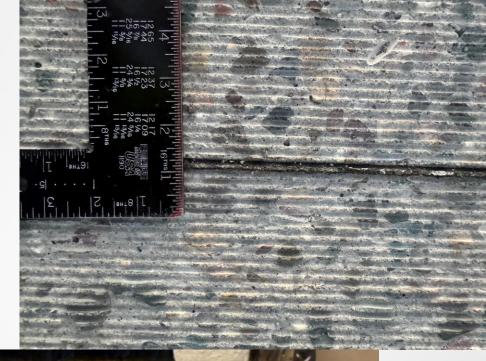
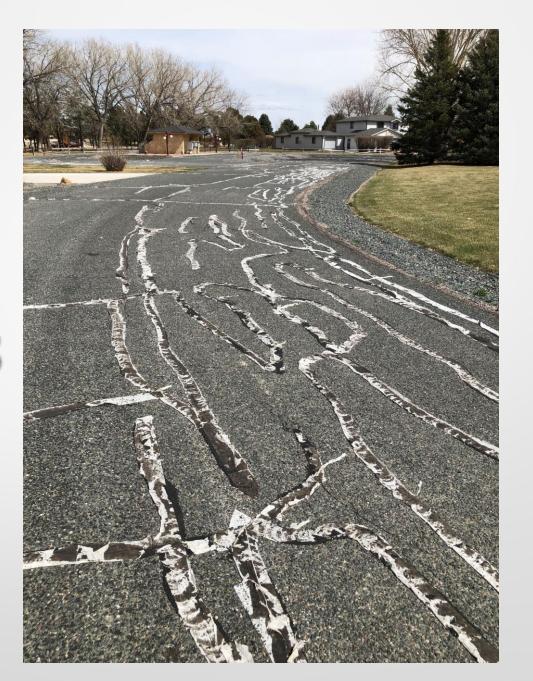

Figure 1 represents the sealant penetration into a 1/8" inch wide laboratory prepared joint sealant installation with a resulting penetration of approximately 1/2". Penetration into a 3/16" wide joint opening was at least two inches. The laboratory penetration results for both joint widths were based on an ASTM D6690 Type II sealant applied at the high end of the recommended application temperature.

Figure 2 indicates a core retrieved from a project which specified a 1/8-inch-wide joint width. Penetration was limited to ½ inch with a large deposit on the surface. This field result supports the lab results.

It is recommended that for new construction, a minimum blade width of 5/32" be used for contraction joints unless a second widening cut is to be performed. This also assumes that with shrinkage, the final joint opening width will be at least 3/16 inch before sealant installation.


March 2021 www.sealnoseal.org

Narrow Joint Installation

Questions

