Environmental Product Declarations – Concrete Treatments Brian Killingsworth, P.E. National Ready Mixed Concrete Association

Roadmap to Carbon Neutrality: Cement & Concrete

A more sustainable world is Shaped by Concrete

The roadmap highlights these strategies and actions.

Roadmap to Carbon Neutrality: Cement & Concrete

Ready Mixed Concrete GWP Progress and Plan

Based on Industry Wide EPD:

- 21% Reduction from 2014–2022
- ▶ 50% Reduction by 2030*
- 100% Reduction by 2050*

*from 2014 as baseline

Concrete Product Category Rule (PCR) – Revision History

Version	Date issued
Version 1 (published by Carbon Leadership Forum)	November 2012
Version 1.1 (published by Carbon Leadership Forum)	December 2013
Version 2 (published by NSF International)	February 2019
Version 2.1 (published by NSF International)	August 2021
Version 2.2 (published by NSF International)	December 2022 Consideration of Mobile Mixers

Valid through February 22, 2024

Concrete Pavement (or Bridge) Life-Cycle Stages: Embodied and Operational (Use) GHG Emissions

Cradle-to-Cradle (Life-Cycle Stages A1-C4, D)

PCR Status: Concrete and Components

Concrete

Revised PCR to be published in February 2024 Manufacturing, 1% Transport - Agg., 4% Admixtures, 0% Transport - Cement, 1% Transport - Admix, 0% Water, 0% Plan for concrete products PCR to address other life-cycle stages Fine Agg., 3% Transport - Water, 0% Coarse Agg., 3% **Component Materials** Cement (Portland, blended, masonry, mortar, and plastic (stucco), slag) SCM (Coal ash, silica fume, natural pozzolans, ground glass) **RAW MATERIALS** Aggregates (Construction and ESCS LW aggregate) Cement, 88%

PRODUCTION

TRANSPORTATION

Water (Considered in background data)

Admixtures and Fibers (Currently use EN standards)

PCR Status - Concrete Components and Products

Material	PCR Program Operator	Current Version	Valid Through	Industry Wide	Comments
Concrete	NSF International	2.2	Feb-24	Yes	IW and Regional Benchmarking; Calculator Tool available (Fall 2023).
Portland, Blended, Masonry, Mortar, and Plastic (Stucco) Cements	NSF International	3.2	Mar-25	Yes	IW portland, portland-limestone, blended hydraulic, masonry
Slag Cement	NSF International	2.0	Dec-25	Yes	LCA Calculator Tool available
Construction Aggregates	NSF International	3.0	Dec-23	No	Revised PCR expected late 2023 / early 2024
Expanded Shale, Clay and Slate Lightweight Aggregate	UL Environment	2.0	Jan-26	No	ESCS agg embodied energy/CO ₂ reported (2006 data)
Supplementary Cementitious Materials	Developer: SmartEPD	-	-	-	In Review
Cements that Require Carbonation Curing	Developer: SmartEPD	-	-	-	In Development
Admixtures/Fibers	None Currently	-	-	-	Some EPDs published based on ISO 21930 / EN 15804
Precast Concrete	NSF International	3.0	Apr-26	Yes	IW structural, architectural & insulated, glass fiber reinforced

Environmental Product Declarations: Impacts Reported

(There are also economic and social impacts to consider that are not reported in an EPD)

Minimum Impacts to be Reported in EPD (per concrete PCR):

- global warming potential (GWP 100)
- ozone depletion potential (ODP)
- eutrophication potential (EP)
- acidification potential (AP)
- photochemical smog creation potential (POCP)
- abiotic depletion potential for non-fossil mineral resources (ADP elements)
- abiotic depletion potential for fossil resources (ADP fossil)
- total waste disposed (kg)
- consumption of freshwater (per ISO 21930:2017, Section 7.2.13)

Additional (Optional) Impacts That May be Reported (per concrete PCR):

carbon sequestered in product (kg)

Concrete Industry EPD Process

- 1. Submitting Company Selects a Program Operator.
- 2. Submitting Company Gathers Data per Product Category Rule (PCR).
- 3. Conduct Life-Cycle Assessment (LCA) by In-House Staff or LCA Consultant.
- 4. Develop Draft EPD by In-House Staff or LCA Consultant.
- 5. Submit the LCA Report and Draft EPD to Program Operator for Initial Verification.
- 6. Program Operator Engages Independent Verifier Who Reviews the LCA Report and Draft EPD.
- 7. Program Operator Certifies EPD for Submitting Company.

**Pre-verified software may be used to generate on-demand EPDs thus reducing the number of steps.

Concrete Embodied Emissions: Environmental Product Declarations

Environmental Product Declaration

Ready-Mix Concrete

(per ISO 14025 and ISO 21930)

Holliday Rock has been a constant presence in the Southern California construction market for over eighty years and is one of the largest independent producers of aggregate, ready mix concrete and hot mix asphalt in the United States. Started by Otha and Ethel Holliday in 1937 during the Great Depression, Holliday Rock has allowed three successive generations of the Holliday family to thrive and expand in an ever more challenging and competitive industry.

Holliday Rock holds the beliefs that long-term success requires common goal adaptability shared values, and most importantly safety.

Authors of the Life Cycle Assessment

A. Grosse-Sommer and D. Green BAS

	PLANT	Deelered Units						
	Rochester	1 yd3 of ready-mix concrete		yd ^a	m			
	1535 Scotsville Road Rochester, INT	Global Warming Potential	kg CO2e	251.14	328.			
	14023	Ozone Depletion	kg CFC11e	7.52E-	9.83			
	PROGRAM OPERATOR			0	00			
	ASTM International 100 Barr Harbor Drive Weet Construction Rev 19478	Acidheaton	kg SU2e	0.07	0.8			
		Eutrophication	kg Ne	0.28	0.3			
		SFP (Smog)	kg O3e	12.68	16.5			
	West Constitution of the first 19420	Abiotic depletion potential for fossil resources	MJ, NCV	474.14	620.			
	DATE OF ISSUE	Abiotic depletion potential for non-fossil mineral resources	kg Sbe	1.50E- 04	1.96			
	9/28/2021	Product Components:						
	PERIOD OF VALIDITY	natural aggregate (ASTM C33), portland limestone cement (ASTM 595), batch water (ASTM C102), administrate (ASTM C404), administrate (ASTM C200)						
	August 4th, 2026							

~84,000* valid product specific EPDs published by concrete producers in <u>U.S.</u> and <u>Canada</u> (as of September 2023)

- Concrete GWP Values for All Mixtures (U.S. and Canada from EC3 Tool):
 - Conservative (Baseline set @ 80^{th} percentile): 348 kgCO_{2e}/yd³
 - Average (Typical set @ Arithmetic Mean & COV): 289 kgCO_{2e}/yd³ \pm 26.8%
 - Achievable (Low-Carbon set @ 20th percentile): 226 kgCO_{2e}/yd³

*Based on Embodied Carbon in Construction Calculator (EC3) Tool initiated by the Carbon Leadership Forum and published by Building Transparency which is very <u>comprehensive</u> but not <u>exhaustive</u>.

<u>***GWP benchmarks should be established locally and by mix type/use***</u>

Concrete Industry Wide Environmental Product Declaration

▶ Ready Mixed Concrete Industry Wide EPD (v3.2) Jan 2022 – Nov 2024

- Currently Collecting Data for Revised IW EPD to be Published Dec 2024
- Based on NRMCA Member Data (100+ Companies & ~2,000 Plants)
- Concrete GWP Values from IW EPD (calculated at ↑strength & ↓SCM ranges):

Industry Average EPD (Published January 3rd, 2022)										
28-day f'c, psi	Minimum	Maximum	0% FA/SL	20% FA	30% FA	40% FA	30% SL	40% SL	50% SL	50% FA/SL
Conventional Concrete GWP (per yd ³)										
0 - 2,500	136.6	213.7	213.7	184.7	169.1	152.6	168.0	152.8	137.5	136.6
2,501 - 3,000	150.7	238.1	238.1	205.2	187.4	168.8	186.1	168.9	151.7	150.7
3, 001 - 4,000	182.5	293.3	293.3	251.7	229.1	205.5	227.5	205.6	183.7	182.5
4,001 - 5,000	220.3	358.5	358.5	306.6	278.6	249.0	276.5	249.2	221.8	220.3
5,001 - 6,000	231.5	377.4	377.4	322.6	293.0	261.7	290.8	262.0	233.1	231.5
6,001 - 8,000	266.9	438.9	438.9	374.4	339.5	302.6	336.9	302.9	268.9	266.9
Lightweight Aggregate Concrete GWP (per yd ³)										
0 - 3,000	303.0	426.4	426.4	367.2	335.2	360.0	305.7	340.8	303.0	321.6
3,001 -4,000	343.6	491.2	491.2	424.0	385.0	414.7	348.2	390.3	343.6	362.5
4,001 - 5,000	373.6	547.6	547.6	468.5	422.4	455.3	380.1	427.5	373.6	394.4

Supplementary Cementitious Material (SCM) Ranges:

0-19% Fly Ash and/or Slag, 20-29% Fly Ash, 30-39% Fly Ash, 40-49% Fly Ash, 30-49% Slag, 40-39% Slag, ≥ 50% Slag, ≥ 20% Fly Ash and ≥ 30% Slag

NRMCA members decreased their carbon footprint by 21% in 7 years

Environmental Product Declaration

NRMCA MEMBER INDUSTRY-AVERAGE EPD FOR READY MIXED CONCRETE

<u>https://www.nrmca.org/wp-</u> <u>content/uploads/2022/03/NRMCA_EPDV3</u> <u>-2_20220301.pdf</u>

Concrete Regional LCA Benchmark Report

	28-Day Compressive Strength, psi										
Region	2,500	3,000	4,000	5,000	6,000	8,000	3,000LW	4,000LW	5,000LW		
		Global Warming Potential (per yd ³)									
National	183.5	200.6	235.6	279.0	294.6	341.3	376.4	412.9	449.8		
Eastern	183.3	201.5	240.2	289.0	305.3	360.5	395.4	437.9	480.1		
Great Lakes Midwest	177.6	194.8	231.4	277.6	293.1	345.3	381.6	421.6	461.3		
North Central	184.2	201.9	238.8	284.7	301.5	351.8	372.1	410.7	451.7		
Pacific Northwest	180.0	199.8	242.0	295.2	311.9	372.7	396.2	439.7	483.4		
Pacific Southwest	196.5	213.5	247.3	288.9	306.4	349.0	382.2	417.5	453.9		
Rocky Mountains	177.5	194.6	229.8	273.4	289.6	336.7	369.8	406.5	443.5		
South Central	172.4	187.7	218.6	257.2	272.2	312.8	357.7	390.2	424.5		
South Eastern	188.9	204.6	236.5	275.5	292.1	332.2	365.6	398.7	429.4		

Table B1-NRMCA U.S. National Benchmark Mix Designs (per cubic yard)										
								3000	4000	5000
Compressive Strength	psi	2500	3000	4000	5000	6000	8000	LW	LW	LW
Portland Cement	lbs	354	394	475	576	610	719	394	475	556
Fly Ash	lbs	62	69	83	101	107	126	69	83	97
Slag Cement	lbs	17	19	23	28	30	35	19	23	27
Mixing Water	lbs	305	305	305	315	341	341	308	308	308
Crushed Coarse Aggregate	lbs	1,126	1,115	1,083	1,029	1,061	1,018	0	0	0
Natural Coarse Aggregate	lbs	553	547	531	505	521	499	0	0	0
Crushed Fine Aggregate	lbs	169	167	162	154	159	152	161	149	136
Natural Fine Aggregate	lbs	1,282	1,270	1,233	1,171	1,208	1,159	1,225	1,130	1,035
Man.Lightweight Aggregate	lbs	0	0	0	0	0	0	980	990	1,000
Air %	%	6%	6%	6%	6%	6%	0	6%	6%	2%
Air Entraining Admixture	oz	1	1	1	1	1	1	1	1	0
Plasticizer & Superplasticizer	oz	3	3	3	7	3	3	3	7	7
Set Accelerator	oz	25	20	15	10	25	20	15	10	10
Total Weight	lbs	3,867	3,886	3,895	3,878	4,037	4,049	2,178	2,168	2,159

- Published by NRMCA July 2022 (v3.2)
- Region Specific Mixtures For:
 - 6 Conventional Concrete Mixtures &
 - 3 Lightweight Concrete Mixtures
 - Complements IW EPDs with average data for 8 regions

Optimization – Compare to Benchmark

Benchmark Data: Regional Benchmark Report

NRMCA Regional Benchmark Report

- Next report (v4) targeting sub-regional average data (2024)
- More granular benchmark data may be challenging to obtain
 - Government grants and incentives can help
 - Data from other sources (public agencies) can help
- Considering publishing interim benchmarks by end of 2023

PCRs and EPDs for Concrete Treatments

Treatment Types	Common Treatment Material(s)	PCR Available?	EPDs Available?	
Concrete overlay	Concrete	Concroto (NSE)	Vos	
Full-depth repair	Concrete	Concrete (NSF)	Tes	
Partial-depth repair	Concrete, epoxy-resins	No for epoxy resins	Yes for concrete	
Full-depth reclamation	Cement	Portland, Blended Hydraulic, Masonry, Mortar, and Plastic Stucco Cements (ASTM)	Yes	
Crack sealing	Rubberized asphalt binder, asphaltic resins, synthetic polymer rubbers, silicones	Building and Construction Sealant (UL)	Yes but limited	
Joint resealing	(ASTM D6690 Type I-IV)			
Diamond grinding	Diamond tipped blades and	NI/A	N/A	
Diamond grooving	grinders	N/A		
Dowel bar retrofit	Babar and anowy coated	Designated Steel Construction		
Cross-stitching	Rebar and epoxy coated	Designated Steel Construction	Yes	
Slot-stitching	Тераг			
Slab stabilization	Polyurethane, cement grout,	No for polyurethane;	Voc for comont	
Slab jacking	asphalt cement	Asphalt binder in development	res for cement	
Retrofitted edgedrains	Pipe, aggregate	Construction Aggregates (ASTM expired); No for edgedrain pipe	Yes but limited	

) 2

Options for Reporting Environmental Impacts with EPDs

- All materials provided meet or exceed an established criteria:
 - Criteria: Fall below an average value (by concrete class):
 - Example: Class S concrete < 300 kg CO_{2e}/yd³
 - Criteria: Fall within a statistical percentile (by concrete class):
 - Example: Class S concrete must be within the lowest 20% of GWP for a population
- Carbon Budget Approach (encourages materials innovation):
 - Set budget for various infrastructure elements (i.e. bridges, pavement/flatwork, drainage structures, etc.)
 - Criteria: Fall below budgeted values

Carbon Budgeting: Bridge Embodied Carbon Impact From Concrete

Establish budget based on bid quantities and expected GWP values (typically based on industry regional benchmark)

Rail: $(yd^3) \times (GWP) = kg CO_{2e}$ Deck: $(yd^3) \times (GWP) = kg CO_{2e}$ Abutments: $(yd^3) \times (GWP) = kg CO_{2e}$ Girders: $(yd^3) \times (GWP) = kg CO_{2e}$ Bents: $(yd^3) \times (GWP) = kg CO_{2e}$ Columns: $(yd^3) \times (GWP) = kg CO_{2e}$ Footings: $(yd^3) \times (GWP) = kg CO_{2e}$ Piles: $(yd^3) \times (GWP) = kg CO_{2e}$

Total Concrete GWP Impact = kg CO_{2e}

Global Warming Potential (GWP) = kg CO_{2e} / yd³

Carbon Budgeting: Bridge Embodied Carbon Impact From Concrete

Actual

Rail: $(yd^3) \times (GWP) = kg CO_{2e}$ Deck: $(yd^3) \times (GWP) = kg CO_{2e}$ Abutments: $(yd^3) \times (GWP) = kg CO_{2e}$ Girders: $(yd^3) \times (GWP) = kg CO_{2e}$ Bents: $(yd^3) \times (GWP) = kg CO_{2e}$ Columns: $(yd^3) \times (GWP) = kg CO_{2e}$ Footings: $(yd^3) \times (GWP) = kg CO_{2e}$ Piles: $(yd^3) \times (GWP) = kg CO_{2e}$

Total Concrete GWP Impact = kg CO_{2e}

Expected

Rail: $(yd^3) \times (GWP) = kg CO_{2e}$ Deck: $(yd^3) \times (GWP) = kg CO_{2e}$ Abutments: $(yd^3) \times (GWP) = kg CO_{2e}$ Girders: $(yd^3) \times (GWP) = kg CO_{2e}$ Bents: $(yd^3) \times (GWP) = kg CO_{2e}$ Columns: $(yd^3) \times (GWP) = kg CO_{2e}$ Footings: $(yd^3) \times (GWP) = kg CO_{2e}$ Piles: $(yd^3) \times (GWP) = kg CO_{2e}$

Total Concrete GWP Impact = kg CO_{2e}

Total GWP_{Actual} ≤ Total GWP_{Expected}

NRMCA Concrete Carbon Calculator

NRMCA Concrete Carbon Calculator

Application	Concrete Quantity (yd ^a)	f'c (PSI)	Proposed MIX GWP (kgCO2e/yd ³)	Project GWP Budget (kgCO2e/ project)	Total Project Proposed GWP (kgCO2e/ project)	Difference from Project Budget	Carbonation (kgCO2e/project)
Pavement	30,000	4,000	246.1		7,383,000		-60,000
Flatwork	1,200	3,000	212.1		254,520	·	-4,440
	6.		37	7,668,000	7,637,520	-0.40 %	-64,440

Reducing Concrete's Embodied Carbon Emissions (In-Use to Near-Term)

Communicate Carbon Reduction Goals

Ensure Good Quality Control and Assurance

Optimize Concrete Designs & Mixtures

Specify Innovative Cements

Specify Supplementary Cementitious Materials

O Don't Limit Ingredients (e.g., PEM)

Set Targets for Carbon Footprint

Sequester Carbon Dioxide in Concrete

Encourage Innovation

Specifications - Prescriptive to Performance

- Design multiple concrete mixtures that meet performance specifications
- Allow innovation with materials and construction specification language while balancing risks
- Transitioning to performance-based specifications requires collaboration to share planning and risk among all participants

Reducing Concrete's Embodied Carbon Emissions: (In-Use to Near-Term)

- Optimized Designs & Rehabilitations
 - Use innovative design, material, and construction methods.
- Use of Type IL Cement
 - Portland-limestone cement containing more than 5% but less than or equal to 15% by mass of limestone.
- Alternative & Blended Cements / Clinkers
 - The use of low CO₂ clinker and blended cements.
- Supplementary Cementitious Materials (SCMs)
 - Fly Ash, Slag, other pozzolans to optimize the amount of cementitious content in the concrete.
- Aggregate Optimization
 - Use well graded mixes to optimize paste and improve workability & durability. On-site concrete recycling.
- Enhanced Carbonation
 - Technologies to use CO₂ emissions (e.g., injected CO₂).

Optimizing concrete mixes using these tools allows the Industry to create low carbon ready-mix concrete

Reducing Concrete's Embodied Carbon Emissions: (Mid- to Long-Term)

Increase Use of Alternative Fuels at Cement Plants

- Utilize transformative fuels and technologies: hydrogen, plasma heating, oxyfuel/oxy-calcination, electric calcination, agriculture and sorted disposed waste...
- Zero or Low Emissions During Cement and Concrete Manufacturing and Transportation
 - Move to renewable energy sources for manufacturing and alternative fuels (e.g., hydrogen) or electric power for transportation.
- Development of New Cements
 - Use low CO₂ clinker and blended cements, new binders, etc.
- Carbon Capture Utilization & Storage
 - Further develop technologies to capture, store, and use CO₂ emissions (e.g., underground storage, enhanced carbonation cement and aggregates, etc.).

Optimizing concrete mixes using these tools allows the Industry to create low carbon ready-mix concrete

GHG Reduction Strategies for Pavements

Strategies have *technical* targets and *timing* of targets and may vary by *region*

System Attribute	Ambitious Improvement Scenario
Material Production	Zero-impact mixtures
Smoothness	Improve at time of construction and during use
Stiffness	Increase material and pavement structure stiffness
Reflectivity	Increase reflectivity
Concrete Carbon Uptake	Increase uptake
Vehicle Fuel Economy	Improve according to government standards

Buy Clean Policies and Project Delivery

- Develop guidance for states on how to collect and use EPD data
 - Assess current commercial vendors
 - Explore data standards development
 - Emphasize EPDs should be used for material procurement but not material selection
- Develop guidance on establishing benchmarks
- Support use of material carbon budget in lieu of mix specific limits
- Provide incentives to use innovative materials and methods on pilot projects
 - Reduce impediments to performance specifications
 - Industry is willing to take risks and fail when financial backstopping provided
 - Implementing innovation should be accelerated

DURABLE. SUSTAINABLE. CONCRETE.

DURABLE. SUSTAINABLE. CONCRETE.