NCHRP 9–62 Rapid Tests and Specifications for Opening to Traffic and Surfacing Asphalt–Treated Cold Recycled Pavement

Brian Diefenderfer, PhD, PE Virginia Transportation Research Council / VDOT

NCHRP 9-62 Tasks

- Develop a set of time-critical tests for asphalt-treated FDR, CIR, and CCPR materials
 - Tests to be simple and practical
- Develop guide specifications for using these tests for...
 - Process control and product acceptance, and
 - Allow agencies to determine when the pavement can be opened to traffic and/or surfaced

NCHRP 9-62 Team

Project

 Brian Diefenderfer, PI; David Jones, Co-PI; Adam Hand, Benjamin Bowers, Gerardo Flintsch, Ilker Boz, Jhony Habbouche

Technical Support

• Stephanie Drain, Tom Kazmierowski, Don Mathews, Jason Wielinksi

NCHRP Staff

• Ed Harrigan and Roberto Barcena

NCHRP 9–62 Work Completed (2017–2022)

Phase I

- Literature review, stakeholder survey
- Review of existing agency specifications
- Identify existing tests
- Phase II
 - Refine or develop tests through testing lab prepared mixtures
- Phase III
 - Field testing, field inter-lab study, test methods, guide specifications
- Phase IV
 - Field validation

Phase I: Literature Review

- Documented economic and environmental benefits of recycling
- Found that lack of rapid process control and acceptance tests limits widespread adoption
 - How does the contractor demonstrate the material meets agencies intent?
 - How does the agency rapidly accept material and make decisions on trafficking/surfacing

Phase I: Literature Review

- Existing tests focus on
 - Stiffness (FWD, etc.)
 - Moisture (direct sampling)
 - Density (nuclear density gauge)
- Other parameters include
 - Deflection / penetration resistance (DCP, MH)
 - Deformation resistance (proof roll)
 - Raveling resistance (lab test)

Phase I: Stakeholder Survey

- Objectives
 - Identify existing non-standard or unpublished tests, improvements to existing tests, hurdles for implementation, background info

Results

- Opening to traffic tests <4 hours, surfacing tests <1day
- 75% prefer field-based test
- Ranked factors to evaluate proposed tests

Phase I: Specification Survey

- Reviewed 62 specifications for CIR, CCPR, and FDR
- Acceptance parameters most cited
 - Density, moisture content, curing time
- For summary, see Bowers et al., TRR 2674 (2020)
 - Test strip and acceptance reference density
 - Required curing times and moisture contents
 - Gradation

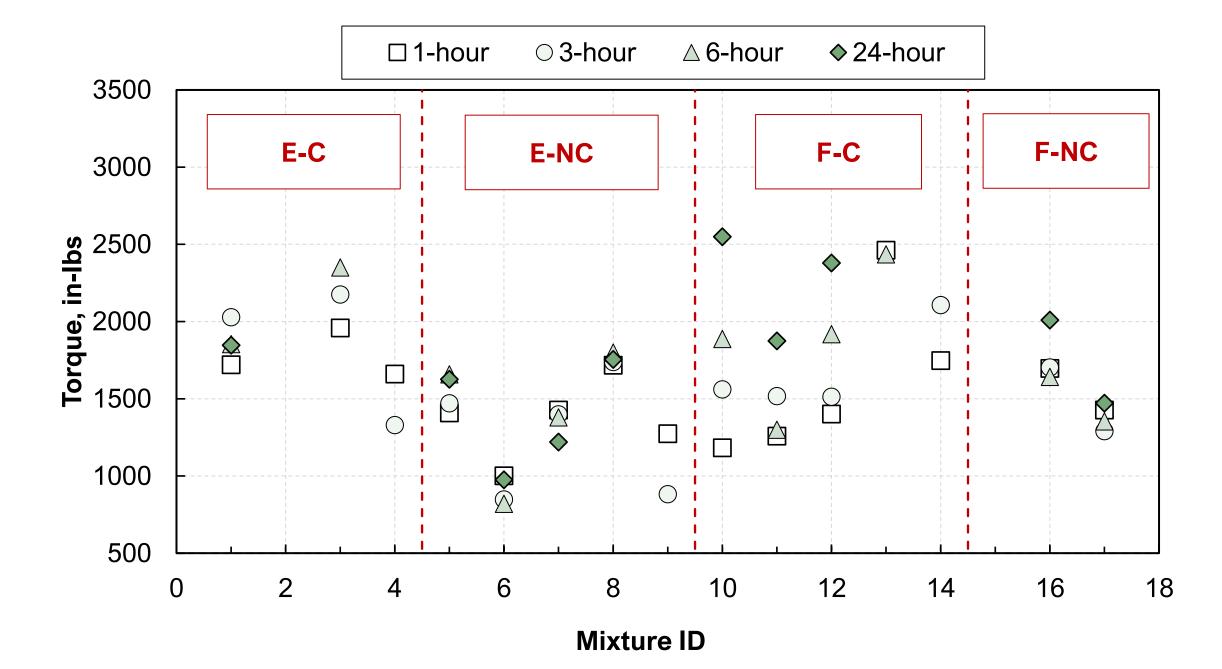
- Loose materials sampled locally and shipped to VTRC
- 12 source projects / 18 mixture combinations
 - CIR, CCPR, FDR
 - Emulsified and foamed asphalt
 - Active filler = cement, none
- Prepared test slabs and conducted tests identified in Phase I

- Objectives
 - Identify promising tests
 - Widest range of responses and lowest variability between replicates
 - Identify correlations between tests
 - Ruggedness assessment
- Tests
 - <u>LWD</u>, <u>DCP</u>, MH, SSG, <u>SPRT</u>, <u>LPST</u>

Developed tests

- Short-Pin Raveling Test (SPRT) trafficking
- Long-Pin Shear Test (LPST) surfacing

Two measures


- Penetration resistance (# of blows)
- Torque value

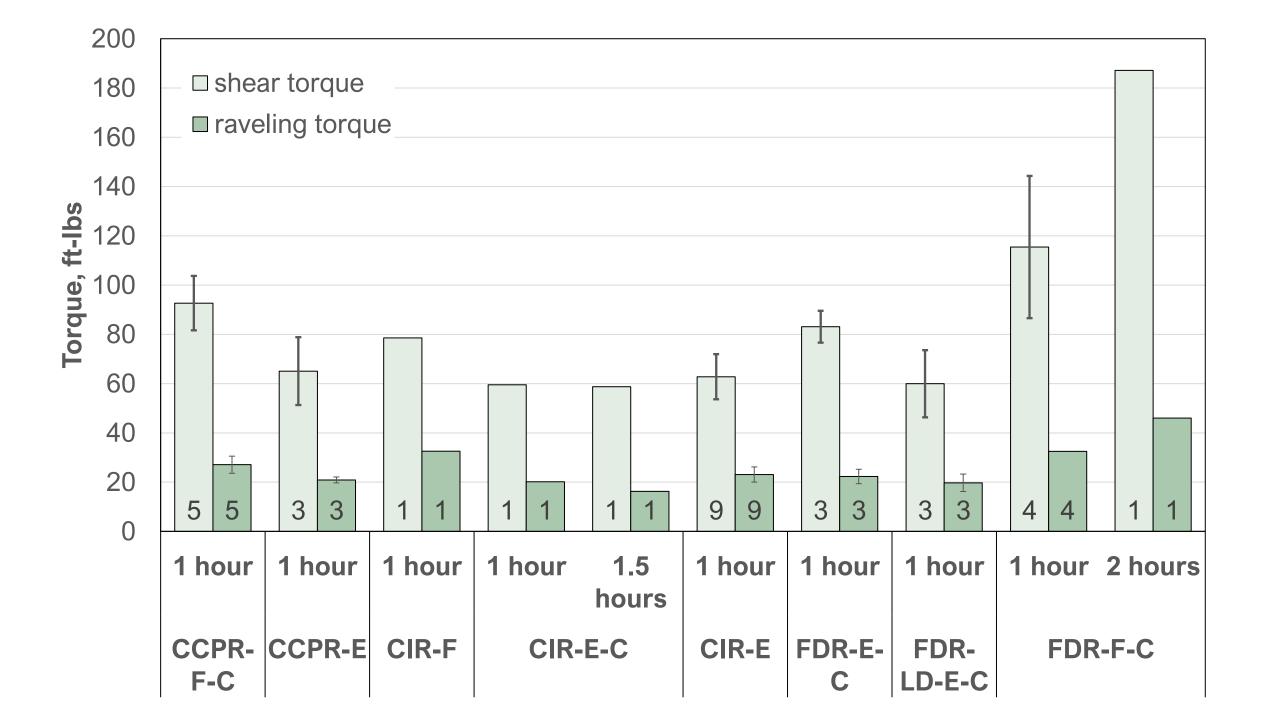
Benefits

- Responsive to property changes
- Lower COV (generally < 20%)

Phase III: Field Testing

- Field validation
 - Test criteria at early curing ages
- Field interlab study (ILS)
 - Field precision using replicate pieces of equipment and multiple operators

Tests considered


- LWD, SSG, DCP, short-pin raveling and long-pin shear tests
- Testing at 9 locations
 - NY (3), MN, IN, SC, CA (2), NM

Phase III: Field Testing

Phase III: Field ILS

- Original idea was a lab study
 - How do we ship slabs and test at early curing times?
- Actual desired outcome is <u>field</u> precision
 - August 2019, MnRoad
 - 6 recycling process/agent combinations
 - 3 replicate pieces of equipment
 - 3 operators

Phase III: Recommended Tests

Recommended

- Short-pin raveling test
- Long-pin shear test
- Number of blows and torque value for each

Not Recommended

- LWD and SSG
 - Influenced by stiffness of lower layers

DCP

 Good repeatability but not thought to address shear properties

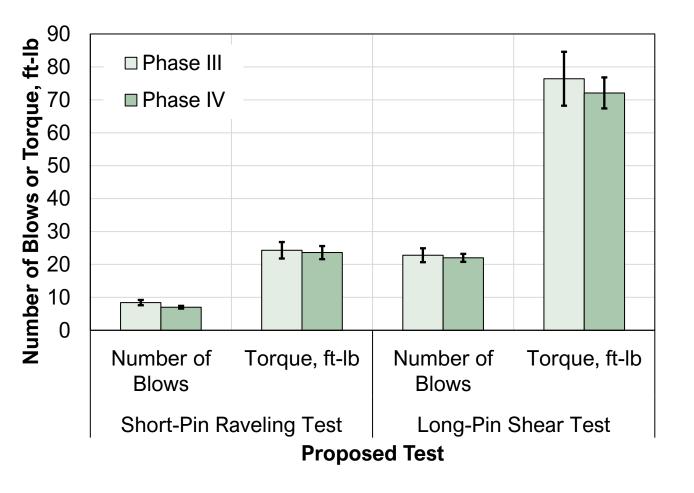
Final Report: Recommended Tests

- NCHRP Report 960
 - Recommended SPRT and LPST for time to opening/trafficking

Threshold values

- Statistical approach (PWL) using Phase III results
- 95% of observations determined to be adequate
- Compared these values in field and lab to 0% binder material
 - 100% RAP with no added binder
 - 0% binder material did not pass threshold values

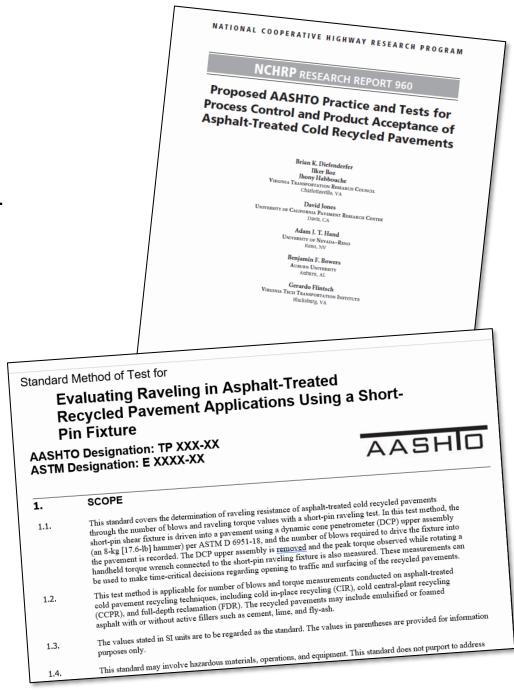
Phase IV: Verification


- 17 additional projects
 - Beyond original study scope
 - All testing by agency or contractor volunteers
- Revised test fixtures
- Training videos

Phase IV: Verification

- Similar results to Phase III
- Less variability
 - Attributed to more experienced operators and training efforts

Test results (all material types) at <3 hours curing for Phases III and IV


Phase IV: Verification

Recommended threshold values

Test		Threshold Value (Avg of 3 tests)
Short-Pin Raveling Test	Number of Blows	7
	Torque, ft-lb	20
Long-Pin Shear Test	Number of Blows	20
	Torque, ft-lb	65

Current Status

- Phases I–III = NCHRP Report 960
 - Initial threshold values for SPRT and LPST
 - Proposed test methods
- Phase IV = in review by NCHRP
 - Revised threshold values for SPRT and LPST
- Revised proposed test methods submitted for balloting

Further Reading

- Phase I Spec Review
 - $^\circ\,$ Bowers et al. (2020) TRR 2674
- Phase II Lab Testing
 - Diefenderfer et al. (2020) TRR 2674
 - Habbouche et al. (2021) TRR online
- Phase III Field ILS
 - $^{\circ}$ Hand et al. (2021) TRR 2675

Brian Diefenderfer, PhD, PE Principal Research Scientist, VTRC <u>brian.diefenderfer@vdot.virginia.gov</u>

