UDOT PERSPECITVE ON PAVEMENT MANAGEMENT DATA

Presented by: Jason Simmons, P.E. Statewide Pavement Engineer Jasonsimmons@utah.gov

MIDWESTERN

NORTHEAST

CARTICICAL PAVELLENT PRESERVATION CONFERENCE DODOOOCOLOGO National Center for Pavement Preservation MICHIGGAN STATE UNIVERSITY

2023 UDOT Pavement Program Funding

- \$160 Million High Volume
 \$23,300 Surface Areas (1 Surface Area = 7040 sq yd or 1 lane mile)
- \$35 Million Low Volume\$4,600 Surface Areas
- \$70 Million Reconstruction
- * Additional maintenance money for in house chip seals
- Approximately \$1.40 / Sq. yd. / Year

What does \$1.40 / sq. yd. / year mean?

Chip Seal = \$5.00 / Sq. Yd.
27% of network every year
Every section every 3 or 4 years

Functional Repair (1.5" Overlay) = \$22 / Sq. Yd.

- ✤ 6% of network every year
- Every section every 16 or 17 years

✤ Reality is we can touch every section about every 10 – 12 years

Pavement Management / Construction Program

Keeping Utah Moving

Pavement Management Data Objectives

* Accurately predict condition based on different funding levels

- Provide accurate project recommendations
 Recommendations stakeholders agree with
- Determine Treatment Life
- Update resets and deterioration curves
- Evaluate specification changes

Treatment Life Analysis

How do we define the life of a preservation treatment?
 What about a rehab treatment?

- NCAT / MnROAD have controlled experiments
 Good starting point
- Can we use pavement management data to determine the actual life of every tenth of mile of every treatment?
- * Can we use this data to compare treatments using \$ / Sq. Yd. / Year of Life extension?

Sample Data Set

* 2016 in-house Maintenance Chip Seals

* 1072 tenth mile Sections

Ride Index Pre Treatment

* All data used, including some questionable data

Rutting Index Pre Treatment

Sample Data Set

2016 in-house Maintenance Chip Seals 1072 tenth mile Sections

Environemental Cracking Index Pre

Ride Index Analysis

✤ 26% of section were worse after the treatment than before

✤ 40% of sections had IRI improvement less than 10

Ride Index Pre Treatment

Ride Index Analysis

* Deterioration curve should be flatter after chip seal for some period of time

- Need a control section to compare
 How many do we need statewide?
- **Same logic applies to rutting and fatigue cracking for seals**
- Indices may have value when analyzing rehabs

Environmental Cracking Index Analysis

✤ 56 Section had pre treatment index of 100

* 20 Section had pre treatment index of 0

Treatment Life Definitions Considered

- Time to Initial Condition
 Not great for outliers
- Time to Fair
 Potentially good for seals
- Time to Poor
 Allows comparison of all treatments
- What happens if do another treatment before definition is reached?
 Predicted based on PMS deterioration curve
- 2017 data is post treatment data
 If 2017 data reached "failure" threshold then treatment had one year of life

Time to initial condition

Average Predicted Time to Initial is 6 years However the standard deviation is 7

Questionable data in year 3

Time to Initial Condition

Predicted Time to Initial Condition

Keeping Utah Moving

Time to fair condition

Average Predicted Time to fair is 11 years
However the standard deviation is 7
49% predicted to last over ten years

Time to poor condition

Average Predicted time to poor is 23 years However the standard deviation is 10 87% of sections predicted to last more than 15 years

Predicted Time to Poor Condition

\$ / Sq. Yd. / Year of Life extension?

If predicted time to initial is considered life extension

Contracted chip seals are about \$5 per sq. yd.
 \$1.85 / sq. yd. / year of life extension on average
 \$0.11 Minimum, \$5 Maximum, \$1.60 Standard deviation

In-house chip seals are half of that cost

Thoughts / Challenges

- End goal is to be able to compare treatments
 Or changes to specifications
- Consistent data collection is needed
 - * Quality is just as important
 - Crack Density needs to replace UDOT's cracking index
- Poor predicted deterioration curves
 - Curve used is based on apparent age
 - Hopefully the data can be used to improve this
- Need to stay on top of LRS changes

Next Steps

- Transition to crack density and improve QC of data
- * Figure out how to reduce that standard deviation
- Repeat for all treatments
- Compare treatments and update decision trees accordingly
- Manage pavements at lowest life cycle cost possible

