Pavement Data Management & Decision Making

Magdy Mikhail, Ph.D., P.E. Trimble, Inc.

Outline

- What is Pavement Management
- Inventory Data
- Condition Data
- Analysis

What is Pavement Management Data

Right Treatment

Right Time

Right Location

Analysis WorkFlow

Inventory Data

- Pavement Type
 - Broad Pavement Type
 - Detailed Pavement Type
- Route Designation (IH, US, SH, FM, etc.)
- District
- County
- Maintenance Section
- Functional class
- Pavement width
- Shoulder width
- Number of Lanes
- NHS
- Rural-Urban Code

Traffic Data

- AADT
- Percent Trucks
- Current 18KIP ESALS
- Speed Limit

Pavement Condition Data

- Distress Data
- Surface Characteristics
- Structural Capacity

How is Condition Data Collected

- Visual Rating
- Automated
 - Fully Automated
 - Semi–Automated

Surface Characteristics

Friction

Texture

Structural Condition Data

Falling Weight Deflectometer (FWD)

Structural Condition Data

High Speed Deflection Devices

Work History and Layer Data

- Surface Age
- Treatment Type
- Layer Type
- Layer Thickness

Decision Trees

- Purpose
 - To accommodate the selection of treatment types based on relevant decision variables including distresses, ride, scores, traffic, etc.
- Treatment types
 - Do Nothing, PM, LR, MR, HR (generic)
 - Overlay, Chips seal, Mill & overlay (Specific)
- Procedure
 - For a given section, its decision variables are input into the decision trees.
 - Multiple treatments are usually recommended by the trees (e.g., PM for transverse cracking, MR for rutting, etc).
 - The most severe treatment type is picked as the output.

Performance Models

- Exponential.
- Hyperbolic
- Inverse Exponential Linear
- Piecewise Linear
- Power
- Sigmoidal

What Does Optimization Mean?

- > An optimization problem is a problem formulated as follows:
 - You desire to maximize or minimize a value (this is called the Objective Function)
 - Your problem is limited by some set of rules that control what solutions are allowed. These are the called the constraints
 - You run the whole process by varying some set of values, these are the Variables
- In general the way to specify an optimization type problem is to state:
 - I want to Maximize or Minimize something (Objective)
 - Subject to these conditions being true (A,B,C) (Constraints)
 - By varying these quantities (X1,X2,X3 ...) (the variables)

Optimization Analysis

Optimization Analysis

- The Objectives Are to:
 - Maximize network condition
 Maximize percentage of network above given condition threshold
 Minimize treatment cost
 Minimize user costs
 - **•Minimize Air Pollution**

 The Constraints are to stop Analysis When:

 Annual budget amounts are reached
 Average condition is achieved annually
 Average remaining service life is achieved annually
 When a specified percentage of the network exceeds a user defined

condition threshold

Summary and Conclusion

- Pavement Management is a data driven approach
- Can help agencies save a lot of money
- Requires significant efforts