TPF-5(291) Development of an SPS-2 Pavement Preservation Experiment

NATIONAL PAVIENENT PRESERVATION CONFERENCE

Acknowledgments

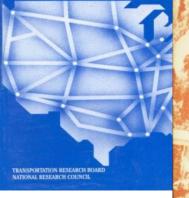
- Larry Scofield IGGA
- WSDOT
 - Jeff Uhlmeyer
 - Kim Schofield
 - Mustafa Mohamedali
- TPF TAC Members
- FHWA/LTPP
- NCE—Timin Punnackal, Nicole Dufalla, Nick Weitzel

Agenda

- Intro to SPS-2s
- TPF Project History
- Key Activities
- Selected Findings
- ► Q&A

Intro to SPS-2s

The Long Term Pavement Performance Program (LTPP)

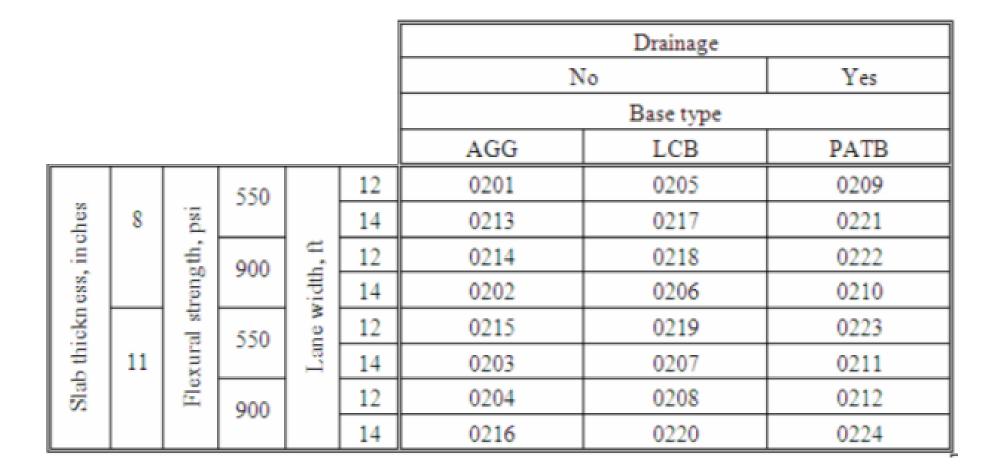

- The LTPP program began in 1987 as part of the Strategic Highway Research Program (SHRP)
- The longest running highway research program in history
- \$250+ Million study
- Over 2,500 test sections
 - General Pavement Studies (GPS)
 - Specific Pavement Studies (SPS)

LTPP's Goal

Special Report 202

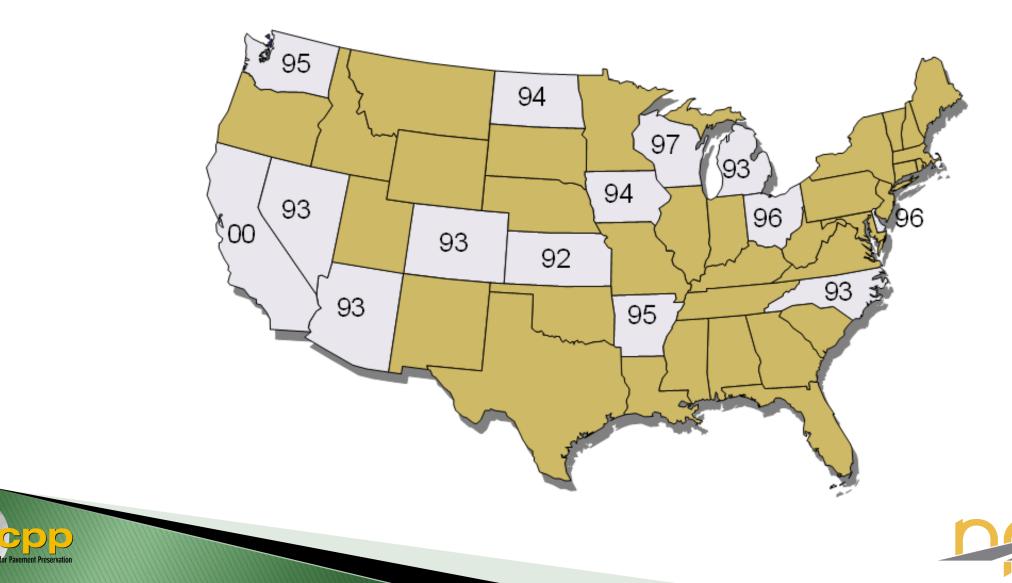
<text><section-header><section-header>

determine **HOW** and WHY pavements perform as they do


Reasons to Create the SPS-2 Experiment

- "At present, highway agencies lack sufficient information on the influence of concrete strength and pavement drainage on the performance of portland cement concrete (PCC) pavements. "
- *Although these factors appear in the AASHTO Guide for Design of Pavement Structures, they were incorporated into the equations through rational engineering considerations and not as the direct result of a structured field experiment."

SPS-2 Experimental Matrix


National Center for Pavement Preservatio

SPS-2 Locations

Pavement Preservat

23

TPF Project History

Background: Project Objective

The objective of this initial study is to provide a comprehensive assessment of all the SPS-2 test sections, in terms of performance monitoring, materials characterization, traffic and environmental data, and surviving test sections. The intent is to provide sufficient information to determine what can and cannot be studied in a preservation experiment on the SPS-2 test sections.

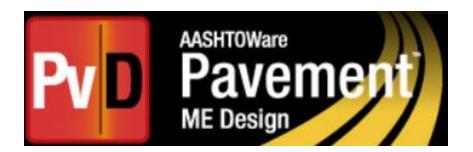
Background: Project Tasks

Scope of work evolution over time:

- 1. Original work to delivery of Draft Final Report
- 2. Comparison of MEPDG predictions to actual performance
- 3.SPS-2 Tech Days and additional analyses for Report based on TAC review comments
- 4.Additional analyses identified as part of SPS-2 Tech Days and TAC input

Reports Completed

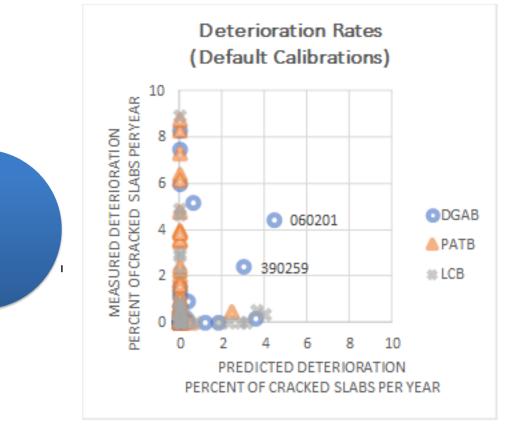
- Development of SPS-2 Pavement Preservation Experiment
- Evaluating the Impact of Design Features on Pavement Performance
- > Analysis of Impact of Joint Score and ALR on Pavement Performance
- Updating Previous LTPP Analyses and the SPS-2 Experimental Matrix
- Evaluating the Impact of Non-Experimental Factors on Pavement Performance
- Impact of Changes in Climate, Traffic, Distress, and Maintenance on Deterioration Rate
- Comparison of SPS-8 and SPS-2 Performance
- Diurnal Changes in Roughness
- Service Life Evaluation
- Evaluating the Impact of Mix Design on Performance
- MEPDG Analysis of the PCC-Base Friction Loss
- Evaluation of Transverse Joint Opening Width



Key Activities

PMED Comparisons

- Developed process to extract SPS-2 data from LTPP Pavement Performance Database as a file of inputs into the AASHTOWare PavementME Design (PMED) software
- Performed runs for all SPS-2 test sections



Deterioration Rates Actual vs Predicted Performance

- Actual deterioration rates were not found to correlate with predicted deterioration rates.
- More than half SPS-2 test section were measured and predicted to have little to no distress.

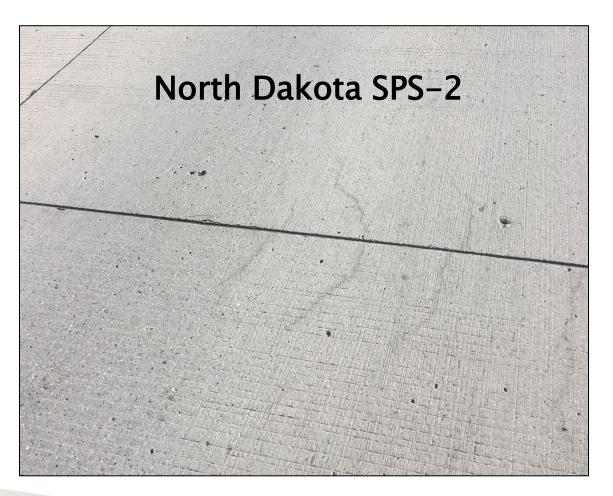
Predicted Slabs	Measured Slabs Cracked			
CRACKED	LOW	HIGH		
LOW	I	II		
HIGH	III	IV		

III IV

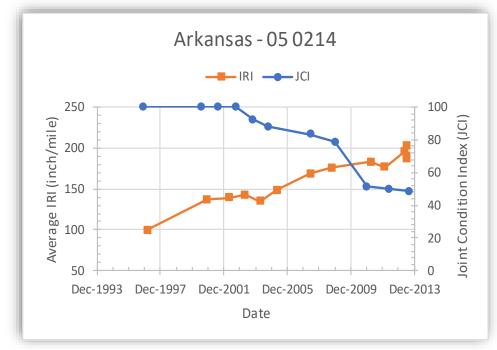
SPS-2 Tech Days

- TAC supported engaging in SPS-2 Tech Days where supported by the State Highway Agency
- Nine completed
- Excellent participation
- Typically included classroom presentations/discussions and field visit

TPF–5(291), SPS–2 TECH DAYS						
State	Date	Location				
Arizona	2/21/2018	Phoenix				
Colorado	3/23/2018	Denver				
Washington	5/2/2018	Ritzville				
Iowa	5/30/2018	Pleasant Hill				
Kansas	10/2/2018	Abeline				
North Dakota	10/16/2018	Biskmark/Fargo				
California	3/12/19	Stockton/Delhi				
Arkansas	3/19/19	Little Rock				
Ohio	5/22/19	Delaware (OH)				


Field Review

Selected Findings



Joint Seal Condition Analysis

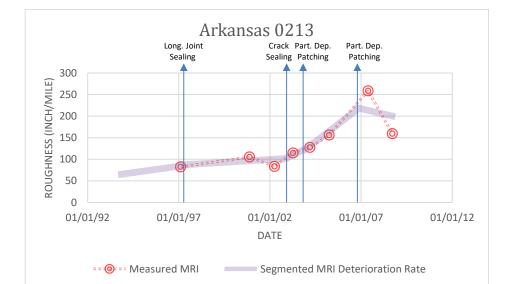
 $JCI = 100 \times \frac{2(count \ of \ low \ severity \ joints) + (count \ of \ medium \ servity \ joints)}{2(total \ number \ of \ joints)}$

Example

Average Transverse Joint Seal Deterioration Rate by Design Feature

SPS-2 Design Feature	Feature Type	Average JCI/year		
PCC Thickness	Thick (11")	-3.2		
	Thin (8")	-4.5		
Base Type	DGAB	-3.3		
	LCB	-3.5		
	РАТВ	-4.5		
PCC Strength	High	-3.9		
	Low	-3.7		
Lane Width	12'	-3.6		
	14'	-4.1		
Drainage	Drainage blanket with longitudinal drains	-3.7		
	Longitudinal drains	-2.2		
	No subsurface drainage	-4.0		

Joint Seal Condition Analysis


- The highest joint seal deterioration rates were found among thin pavement test sections with PATB base
- As joint condition decreases IRI, faulting, and percent of cracked slabs typically increase.
- The inverse relationship between joint condition and cracked slabs is strongest for pavements with:
 - thin high-strength PCC
 - treated bases
 - 12-foot wide slabs
 - subsurface drainage

Impact of Maintenance on Roughness

- Evaluated how different types of maintenance affected roughness deterioration rate in the short-term
- Process:
 - Segment roughness deterioration rates by maintenance events.
 - Evaluate the change in roughness deterioration before and after maintenance and compare to the overall roughness deterioration rate.

Date	Maintenance Treatment
9/1/1993	In–Study
2/5/1997	Lane-Shoulder Longitudinal Joint Sealing
12/12/2002	Crack Sealing
	Partial Depth Patching of PCC Pavement other than at Joint
10/15/2006	Partial Depth Patching of PCC Pavement other than at Joint
11/15/2008	Out-of-Study

Coarseness Factor - Workability Factor

 \dot{O}

Zone	Description	Low-Strength Mixtures	High-Strength Mixtures			
Zone l	Coarse gap-graded aggregate mix that tends to segregate	04 (Arizona) 06 (California) 10 (Delaware) 37 (North Carolina) 39 (Ohio) 53 (Washington)	37 (North Carolina) 39 (Ohio)			
Zone II	Well graded mix in sizes between 2-inch and ¾- inch maximum aggregate size	05 (Arkansas) 19 (Iowa) 26 (Michigan) 32 (Nevada) 38 (North Dakota)	05 (Arkansas) 08 (Colorado) 38 (North Dakota)			
Zone III	³ 4-inch minus aggregate mixtures	None				
Zone IV	Excessive fines mixtures – sticky	08 (Colorado) 20 (Kansas) 55 (Wisconsin)	04 (Arizona) 06 (California) 10 (Delaware) 19 (Iowa) 20 (Kansas) 26 (Michigan) 53 (Washington) 55 (Wisconsin)			
Zone V	Non-plastic mixtures - rocky		32 (Nevada)			

Design Feature Impact on Performance

SPS-2	Design	Pavement Performance Measure Deterioration Over Time								
Design Feature	Feature Type	Roughness	Faulting	Transverse Cracking	Longitudinal Cracking	Shoulder Dropoff	LTE	Mid-slab Deflection	AREA Value	Joint Condition
PCC	Thick (11")	16	16	16	16	NA	16	14	X	16
Thickness	Thin (8")	- 1	- 14	- 14		NA	-		×	- 14
Base Type	DGAB	X	Х	X	16	NA	×	X	×	14
	PATB	16	16	14	16	NA	×	×	×	14
	LCB	-	- 14	- 14		NA	×	×	×	- 14
PCC	High	X	16	- 14	16	NA	16	×	×	×
Strength	Low	X	- 14	14	-	NA	-	×	×	×
Lane	12'	×	- 14	- 14	14	NA	-	×	×	14
Width	14'	×	16	14	-	NA	16	×	×	- 14
Drainage	Drainage blanket/ longitudinal drains	1¢	×	1 der	1 der	NA	×	×	×	14
	No subsurface drainage	-	×	•	14	NA	×	×	×	14
Shoulder	AC	- 1	NA	NA	×	-	×	NA	NA	NA
Туре	PCC	14	NA	NA	×	14	X	NA	NA	NA

relatively positive impact on deterioration rate or performance measure.

relatively negative impact on deterioration rate or performance measure.

× - no clearly observable impact or impact varies significantly from project to project.

NA – impact on performance measure was not applicable to design feature.

Design Feature Impact on Service Life

Serviceability
based on FHWA
roughness,
faulting, and
cracking criteria

Decian Eactor	Relative Service Life Improvement				
Design Factor	Regular Traffic	Lower Traffic			
Thick pavements	4 years (15-20%)	2 years (10-15%)			
PATB base type	2 years (10-15%)	<0.5 years			
High-strength PCC	1–2 years (10%)	<0.5 years			
Widened lanes	<0.5 years	N/A			

Q&A + For More Information

► InfoPave[™] https://infopave.fhwa.dot.gov/

U.S. Department of Transportation Federal Highway Administration

TPF https://www.pooledfund.org/Details/Study/533

- Kevin Senn
 - <u>ksenn@ncenet.com</u>
 - · 775-846-7117

Transportation Pooled Fund - Study Detail

Home > Studies > Development of an SPS-2 Pavement Preservation Experiment

Thank You!

National Center for Pavement Preservation