

Environmentally Beneficial Paving Additives Using TiO2

NATIONAL PAVEMENT PRESERVATION CONFERENCE

Pavement Preservation & Environmental Sustainability Specialists

- ~50,000 Miles
- \$6.3 Billion in Carbon Value*
- \$3.1 Billion in Agency Budget Savings

World's First <u>Retrofit</u> Photocatalytic Technology for Pavements to Target Use Phase Emissions

Traditional Pavement Preservation Agents Fortified with Photocatalytic Grade TiO₂

Pavement Technology, Inc. Real Science. Real Results.

Texas A&M
Transportation
Institute

Why Did We Develop **Photocatalytic Solutions?** To Solve The Next Problems Facing Transportation Professionals EEEE

Environmental Product Declarations

EPD Headwinds or Opportunity for Paving Industry?

- FHWA to Release EPD Guidelines
- EO-14057(S303) USDOT Buy Clean Initiative
- H.R. 3684 Infrastructure Investment Act (IIJA)
- H.R. 5376 Inflation Reduction Act (IRA)
- State DOT EPD Adoption Rapidly Coming
- "FAST" Act | CMAQ

CO₂e Reduction Options in Paving

- Embodied Carbon Reductions Difficult
- Use Phase Technologies Will Be Needed

Use Phase – System Boundaries

Sequestra

Pavement Vehicle Interactions (PV)

Albedo | Emissivity | Urban Heat Island

Waterways

Carbonation

"To achieve net zero in the production of asphalt mixtures, carbon offsets will be necessary" – NAPA The Road Forward

0

Big Targets

Mobile Emissions are the #1 Source for Photochemical Smog & Harmful GHG Emissions*

*EPA "Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2018"

Carbon Emissions

Sinks

Excessive Heat #1 Weather-Relate 00 30 **Pavements** 80 **One-Third of** 60 **Urban Heat**

10

*National Weather Service

40

20

85% of Microplastic <u>Air and Waterway</u> Pollution from Tires and Brake Pads*

"Carrington, "Airborne Plastic Pollution 'Spiraling Around the Globe," *The Guardian*, 2020

*7Million Metric Tons Annually

Brakes & Tires **30%** PM 2.5

The Washington Post

IDDEN PLANET

Why tires — not tailpipes — are spewing more pollution from your cars

Near and tear on vehicles' tires and brakes emit fine particles into the air, linked to heart and lung disease

Euro 7 guidelines to include tire and brake emissions standards

By MATT ROSS – 15th November 2022 🕓 2 Mins Read

82% Goes in Our Water

*EPA

EVs Increase On-Road Tire Pollution

	Emission type, mg, d8-toluene equivalence basis	Kia Niro – tailpipe	Kia Niro – tyres	Tesla Model Y – tyres	Kia Niro total vs Tesla Model Y	
	Aromatics, aldehydes, ketones	1.86	54.26	150.52	-63%	
	Polycyclic aromatic hydrocarbons, nitro-aromatics	0.32	90.21	487.83	-82%	
	Alkanes, alkenes, alkynes, cyclo	2.20	185.41	255.50	-27%	
	Average variance				-57%	
		Road-associated M	icroplastic			
	1.00		51		120	00/
					+3;	970
	0.90					
FINI	0.85	and the second se				
	0.80					
	0.75				United Kir	ingdom
	0.70	17 2019	2021 20	23 2025	2027 20)29
Kational Center for Pavement Preservation				D		23

How & How Well Do Photocatalytic Solutions Work?

Plust

R

TiO₂ is Photoreactive

Consumes & Redirects UV Light

Proven to Reduce Exhaust Emissions by as much as 60% & NEE's by 98%

Invisible Pollution Scrubbing Subway

бн

 CO_2

NOx

Photocatalytic Decarbonization

Natural Reduction by Oxidation or Redox 100% Perpetual Solar Powered Carbon Removal

CO₂ Capture & Decomposition

(Super)Natural Concrete Carbon Sinks

Perpetual Carbon Sink Research

Pavement Technology, Inc

Purdue University

achieve a remarkable 41.81% reduction in CO₂ concentration. This corresponds to a substantial enhancement in the material's CO₂ reduction capabilities when employing TilntroCME[®].

application of the product, as well as an increase in the overall CO_2 uptake. This means that as time goes by, the samples are still being able to absorb and/or decompose CO_2 from the air, which is preferable, as it the material will potentially keep reducing the CO_2 concentration in the act without reaching a plateau.

THE PERSISTENT PURSUIT OF THE

NEXT GIANT LEAP

NEIL ARMSTRONG HALL OF ENGINEERING

How We Spent Our Summer Vacation

TNIVE

Smog Eating

Oxidative Removal of NO₂ and VOCs 850x as Toxic When Airborne

NOx Capture & Decomposition

TiO₂ Virtually Eliminates RAMPs!

Microplastic Reduction Efficiency

Sample	Test (hours)	Pled (watts)	Diameter Beg	Diameter End	Volume Loss	
A	2	110	100nm	37nm	94.8%	
В	24	110	100nm	16nm	99.6%	
		as A&M sportation tute				Without TiO ₂ 100%

PROVEN: TiO₂ nanoparticles degrade 98.4% of microplastics*

With TiO₂

1.6%

Texas A&M Transportat

EFFECT OF TIO2 TOPICAL TREATMENTS ON CONCRETE AND ASPHALT FOR ON-ROAD MICROPLASTIC POLLUTANT REMOVAL

Conclusion:

The images taken with the SEM are direct evidence of the rapid and substantial evaporation of microplastics with the aid of TiO2 as a catalyst. Several samples were successfully tested and analyzed resulting in a substantial volume loss over time (specifically a change in microsphere diameter).

Results:

The twenty-four (24) hour volume loss found in each sample can be found in Table [1]. This volume loss represents the smallest diameter found in the SEM images per sample. There is evidence of 100% volume loss in the SEM images which can be observed in the right most picture in Figure [1] and more easily in Figure [2].

Table 1: 24 – Hour Irradiation

Sample #	Test Duration (hrs)	P _{LED} (W)	D _{initial} (nm)	Dinal (nm)	V _{initial} (nm ³)	V _{final} (nm ³)	Volume Loss (%)
1	2	110	100.0	37.4	523599	27282	94.8
2	24	110	100.0	15.7	523599	2026	99.6

D C 23

Use Phase Redox Technology Benefits

- ✓ MRT saves 1,500 tons AC CO₂e per CLM per Cycle
- \checkmark TiO₂ doubles concrete carbon uptake to 50%+ & is perpetual
- ✓ TiO₂ removes >6,000 CO2e per CLM per year
- **<u>TiO₂ removes 98% of Road-Associated Microplastic Pollutants</u>**
- TiO₂ removes up to 60% of Tailpipe Emissions
- TiO₂ improves Solar Reflectance 4x Asphalt 2x Concrete

Preservation Benefits of TiO2

- \checkmark TiO₂ accelerates and doubles concrete durability (CaCO₃)
- ✓ TiO₂ quadruples Asphalt UV protection (solar reflectance)
- TiO₂ improves pavement permeability (5x water contact angle)

Field Application

PUST

Penetrant-based to Achieve Both Durability and Affordability

R

Sustainable

Orlando International Airport

Raleigh

Tailpipe Emissions

NO Reduction Efficiency (%)*

A.R.A1 Ti®	0.04 + 0.03	0.04	0.06 + 0.03	0.06
	gsy	gsy	gsy	gsy
	47%	38%	50%	43%

NO Reduction Efficiency (%)*

Cincinnati A.R.A1 TI®	0.08	0.08	0.07	0.07
	gsy	gsy	gsy	gsy
	46%	45%	42%	44%

*ISO 22197-1 Photocatalytic Materials Air Purification Test Procedure

Texas A&M Transportation Institute

Thermal Imagery

Raleigh

		Control	Core #1	Core #2	Core #3	
Phoenix	Reflectance	8	42	43	40	1
	Tailpipe Emissions	0%	48%	51%	46%	
		Control	Core #1	Core #2		
Tucson	Reflectance	7	44	45		
	Tailpipe Emissions	0%	53%	54%		Texas A&M
					tion and the second sec	Transportation Institute

Self Cleaning

- The Oxidizing Power of TiO2
- ✓ Anti-Nitrogen and Carbon
- ✓ Anti-Trace Gases
- ✓ Anti-Plastic
- ✓ Anti-Mold
- Antimicrobial
- 🖊 Anti-Graffiti

No Mold

Orlando International Airport

Carbon Accounting

Direct Carbon Reduction at Scale One Mile TiO,-Treated Road Equals Fifteen Acres of Forest >6,000 Metric Tons CO,e per Year* Pollution Generated by ~1,000 Cars

*25,000 AADT

Table 18 – Tree Equivalence of a Photocatalytic Surface

Urban street tree	Photocatalytic surface	Photocatalytic surface	Urban street tree
10	(100 – 125) m ²	10 m ²	0.8 – 1
1,000	(10,000 – 12,500) m ²	1,000 m ²	80 - 100
5,000	(50,000 - 62,500) m ²	5,000 m ²	400 - 500

Source: HeidelbergCement Group

~Each Mile of Road

Table 19 – Car Equivalence of a Photocatalytic Surface

Gasoline car (Euro 6)	Photocatalytic surface (needed to eliminate the corresponding emissions)
1	(46 – 57) m ²
10	(460 – 570) m ²
1,000	(46,000 – 57,000) m ²

Source: HeidelbergCement Group

Negative Carbon Road Systems

Lifecycle GHG Emissions kt CO₂e

Source: MIT CSHub; BlackwallPartners LLC

The Scalable Photocatalytic **Pavement Solution** Orlando Orlando Intl Airport Charleston Delray Beach FL Vero Beach Reg Airport Greater Clevelar Raleigh Austin acinnati Charlotte San Antonio Eding MN (MnRoads) Durham ucson Cary NC Nevada DOT Tempe Avondale AZ Greenville Se FHWA Climate reliowstone Nat Park Challenge' Grant (Purdue)

Environmental Justice

Pavement Owners Have a Unique Opportunity

 Roads are Everywhere Impacting Every Community

* Heat; Smog; Carbon; Water

<5% Added Paving Cost <\$20,000 per mile <\$2 CO₂ per ton ~\$1 CO₂e per ton

Road System Photocatalysis

- Existing Roads = No New Land Use
- TiO₂ x Sunlight = "Free Energy"
- CO₂e Comes to Us
- Huge Environmental & Ecological Gains
 - Accelerates Carbon, Nitrogen and Plastic Cycles
 - Reducing Dangerous Airborne & Waterborne Pollution
- Full Uptake = No Dumping!

National Center for Pavement Preservation

Table 25 – Cost of Carbon Removal					
	Est. Cost Per Ton (\$)				
Direct Air Capture	>1,000				
Rock Mineralization	>500				
Biden Administration	125-190				
Lower Carbon Portland Cement	75-125				
Paris Agreement (2030)	100				
Lower Carbon Steel & Iron	50-100				
Renewable Energy	50-100				
Carbon ETF	45				
Biofuel	30-40				
Nat Gas for Coal	<20				
Photocatalytic Pavement	<2				

Congratulations Charleston!

2023 APWA Technical Innovation Award Charleston County Public Works Titanium Dioxide Program

Resources

Michael Durante mdurante@pavetechinc.com @michael_durante

www.SmogEatingRoads.com

