

Reducing the Carbon Footprint of Concrete

Pavements Through Preservation

NPPC2023 – September 19, 2023

Brief Personal Introduction

- I have 35+ years working with concrete materials, focused on durability and sustainability
 - A recovering academic who has worked as a consultant since 2008
 - Primary work is on concrete pavements and materials
 - Since 2010, working on sustainability and carbon reduction for FHWA, state DOTs, associations, and foundations
 - I recently became a grandfather, like to break other people's sailboats, and am a Black Rock Ranger at Burning Man

SOLUTIONS FOR THE BUILT WORLD

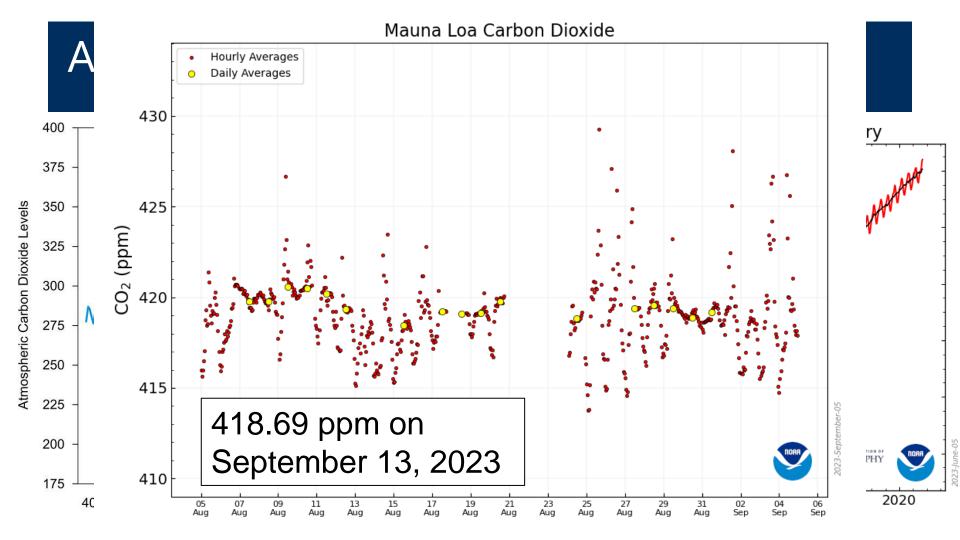
The Driver: Climate Change

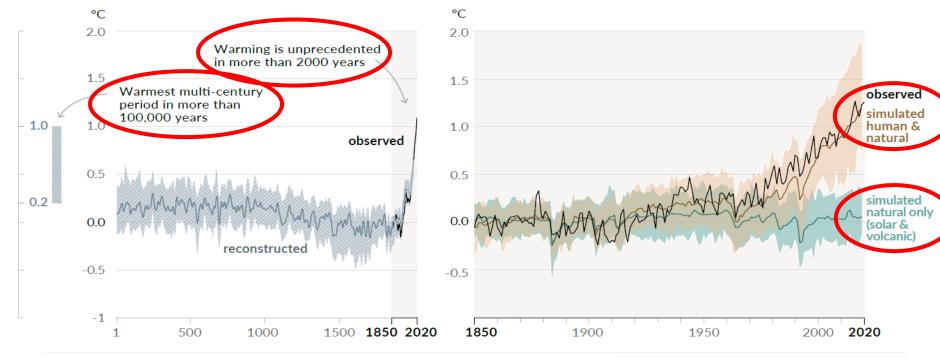
www.wje.com

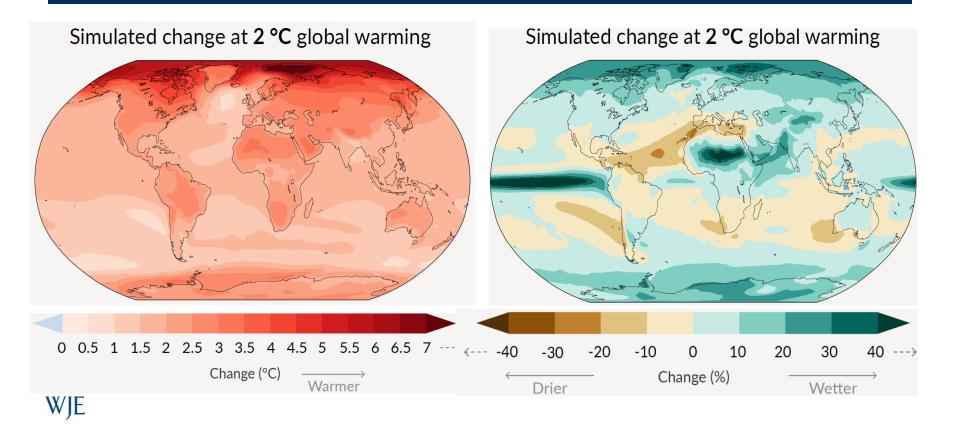
WJE ARCHITECTS
MATERIALS SCIENTISTS
Wiss, Janney, Elstner Associates, Inc.

"Can you be more specific?"

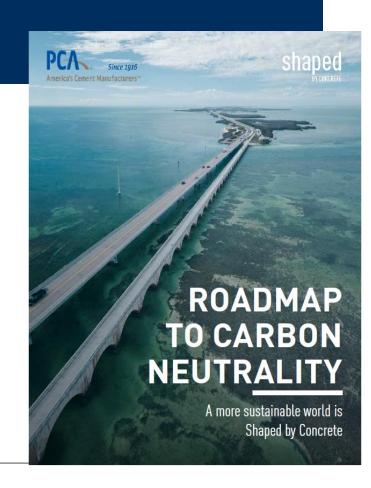
Climate Change at the Forefront


- Scientific observations confirm the climate is changing
 - The Arctic is melting, and sea levels are rising
 - Hurricanes and wildfires more severe
- Governmental policy is emphasizing climate change and carbon reduction
 - Infrastructure Investment and Jobs Act (IIJA) and Inflation Reduction Act (IRA)
- Low-carbon solutions are of increasing interest to governmental agencies and industry
- This is a world-wide effort





Changes in Global Surface Temperatures (IPCC 2021)


Regional Differences (IPCC 2021)

Challenges In Front of Us

- Change is difficult
 - Must end business as usual
- Traditional cement and concrete are carbon intensive
- Designs and materials are dictated by the past and "conservatism" in codes and specifications

THIS IS AN OPPORTUNITY TO INNOVATE!

How Does Concrete Pavement Preservation Impact Climate Change?

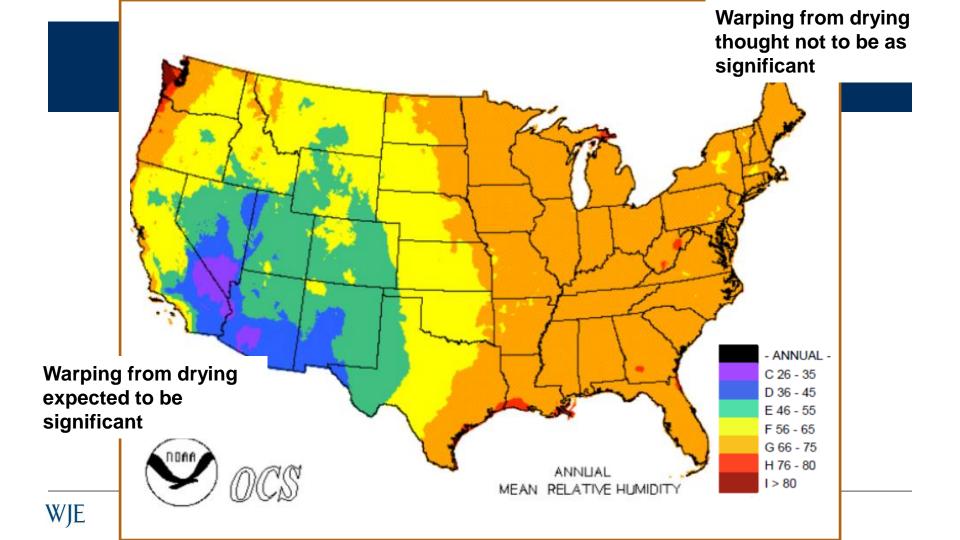
- Extending the life of a concrete pavement reduces GHG emissions associated with construction over the life cycle
- Keeping smooth pavements smooth reduces vehicle GHG emissions and costs

Grinding a carbonated concrete pavement surface will sequester

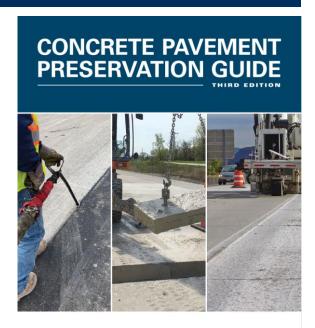
additional CO₂

Benefits of Extended Pavement Life

- Reduction in material acquisition, processing, and construction
 - Concrete pavement preservation requires little to no new materials
- Reduction in congestion due to major reconstruction
 - Results in reduced GHG emissions
- These benefits are significant and quantifiable over the life cycle

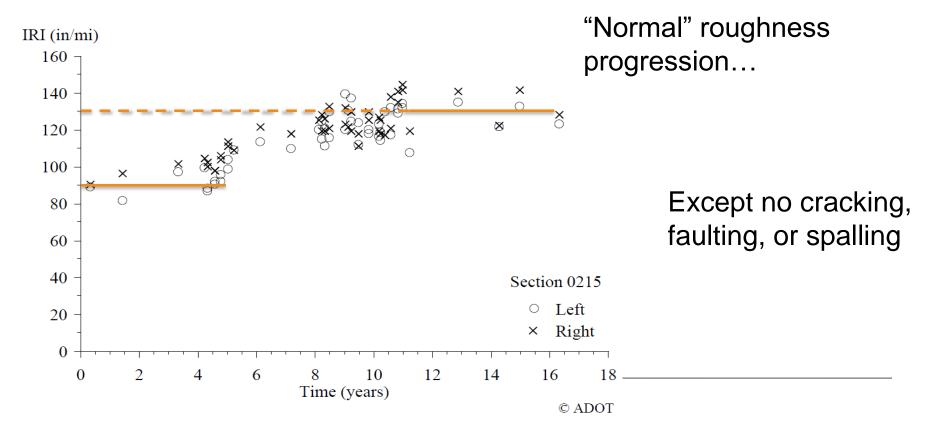


Ride Quality and Concrete Pavements

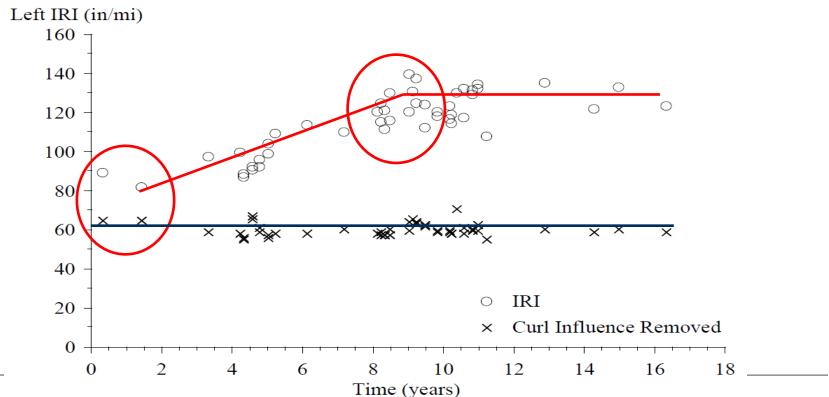

- Concrete pavements are being constructed with improved ride quality
 - In some markets, initial IRI values of 40 in/mile are routinely achieved
- Over time, ride quality decreases for many reasons
 - Distress development (i.e., cracking, faulting, spalling)
 - Development of slab curvature due to temperature and moisture gradients
 - Trend is toward development of upward curvature

Concrete Pavement Preservation Strategies

- Slab stabilization
- Partial-depth repair
- Full-depth repair
- Drainage restoration
- Dowel bar retrofit
- Diamond grinding and grooving
- Joint resealing



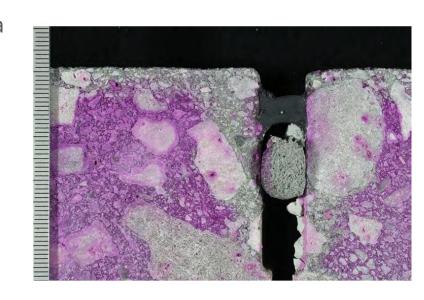
Diamond Grinding – Performance Benefits


- Significant noise reduction
- Improves friction
- Improves cross slope
- Restores smoothness (by removing roughness due to curvature and joint/crack faulting)
- Performance life (typical):
 - 14-17 years

IRI Over Time - LTPP Section 040215 as Part of Arizona SPS-2

IRI Progression (Section 040215) Left Wheel Path

Pavement Smoothness and Fuel Consumption

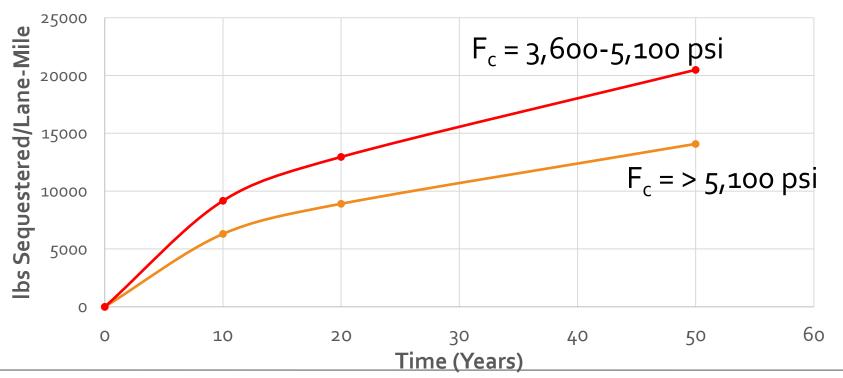

- It is well-documented that vehicle fuel efficiency is related to the smoothness of the pavement
 - Smoother pavements result in less fuel consumption and less GHG emissions
 - This is foundational to the World Bank HDM 4 model and has been validated by NCHRP, Caltrans, and in Europe
 - Work by UC-Davis and MIT have demonstrated this, and models have been developed to quantify it

IRI Trigger Values (Wang et al. 2012)

	Traffic group	Daily PCE of lane- segments range	Total lane- miles	Percentile of lane-mile	Optimal IRI triggering value (m/km, inch/mile in parentheses)		Annualized CO ₂ -e reductions (MMT)	Modified total cost- effectiveness (\$/tCO ₂ -e)
	1	<2,517	12,068	<25			0	N/A
	2	2,517 to 11,704	12,068	25~50		2.8 (177)	0.141	1,169
	3	11,704 to 19,108	4,827	50~60		2.0 (127)	0.096	857
	4	19,108 to 33,908	4,827	60~70		2.0 (127)	0.128	503
	5	33,908 to 64,656	4,827	70~80		1.6 (101)	0.264	516
	6	64,656 to 95,184	4,827	80~90		1.6 (101)	0.297	259
	7	>95,184	4,827	90~100		1.6 (101)	0.45	104
V,	Total						1.38	416

What About CO₂ Sequestration Through Carbonation?

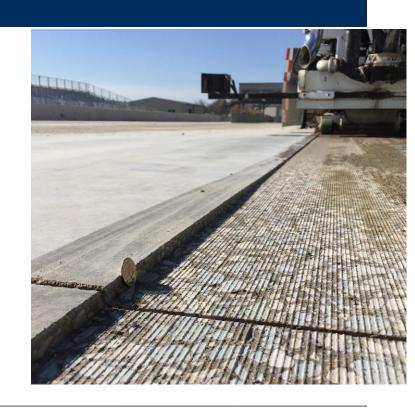
- It is a real thing
 - Anderson, et. al. (2019), "Carbonation as a method to improve climate performance for cement based materials." Cement and Concrete Research (2019)
- Paper quantifies uptake of CO₂ by concrete through carbonation
 - $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$
 - Calcium silicate hydrate also undergoes carbonation
 - Uses Fick's law

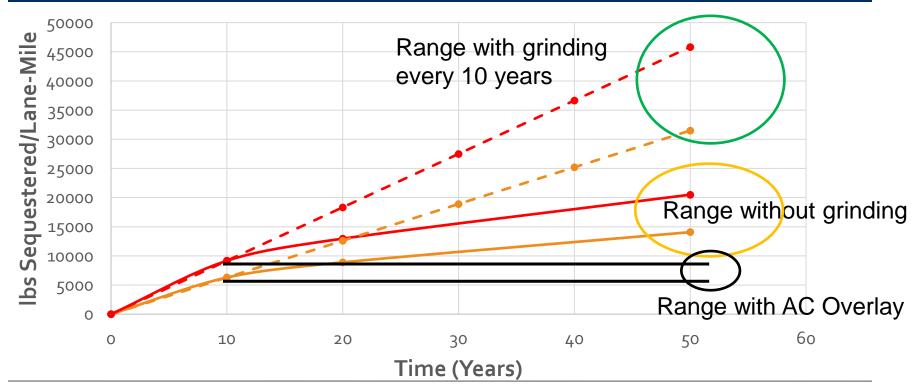

How Much Carbonation Occurs in Typical Concrete Pavement?

- Depends on exposure and quality of concrete
 - Is climate wet or dry? Is it exposed to rain?
- Quality of concrete
 - In Anderson et al. (2019), it is related to strength, but it is permeability that matters
- In general, dry concrete that is permeable (low strength)
 will have a higher degree of carbonation than wet
 concrete that has low permeability (high strength)

Applying This to a Typical U.S. Pavement

- Assume 564 lbs/yd³ portland cement in concrete with a compressive strength of 4000 psi that is exposed to rain
- The amount of CO₂ sequestered through carbonation is calculated to be between 0.2-0.3 lbs/ft² of surface area in 50 years
 - Roughly 14,000-20,000 lbs CO₂ per lane-mile, or equivalent to 700 to 1000 gallons of fuel consumed
 - 1 to 1.5 cars off the road


Pounds CO₂ Sequestered Over Time per Lane-Mile



Diamond Grinding Increases Carbonation

- Rate of carbonation decreases with time
 - Roughly 45% of carbonation over 50 years occurs by Year 10
- Diamond grinding exposes "fresh", uncarbonated concrete to the atmosphere
- Grinding every 10 years will more than double the amount of sequestered CO₂ over 50 years
- Overlaying concrete with asphalt will shut out atmospheric CO₂ and terminate sequestration

Pounds CO₂ Sequestered Over Time per Lane-Mile

Result - Diamond Grinding has Close to Net Zero GHG Emissions Due to Enhanced Carbonation

- Diamond grinding every 10 years results in 17,400 to 25,300 lbs of additional CO₂ being sequestered over 50 years per lane-mile
 - This is equivalent to 870 to 1,270 gallons of diesel fuel consumed over 50 years
- Diamond grinding four times over 50 years consumes between 1,000 and 1,600 gallons of diesel
 - 250-400 gallons per lane-mile of grinding

New Tool Being Released by IGGA/ACPA

- A new tool is being developed to estimate life cycle greenhouse gas emissions associated with pavement roughness and carbonation
- Can be used to thumbnail carbon savings incurred by keeping smooth pavements smooth
 - Important story for the pavement preservation industry to tell
- Contact Nick Davis at IGGA or Eric Ferrebee at ACPA for details

Current Funding Opportunities

- FHWA Climate Challenge
 - 27 projects awarded
- SHAs beginning to focus on quantifying and reducing carbon
- Buy Clean Initiatives (IIJA)
 - Federal, state, local agency and private interest
- IRA committed \$2B through FHWA to facilitate adoption of low-carbon materials
 - Available to state and local agencies through federal-aid highway funding

FHWA IRA Funding

- The Inflation Reduction Act (IRA) Section 60506 provides for Low-Carbon Transportation Materials Grants
- Updates: https://www.fhwa.dot.gov/inflation-reduction-act/
- Fact sheets: https://www.fhwa.dot.gov/inflation-reduction-act/fact_sheets/lctm_grants.cfm
- EPA website: https://www.epa.gov/inflation-reduction-act/inflation-act/inflat

We Are Looking For Willing Participants!

- Our team (NCE, WJE, Larry Sutter, Doug Hooton, and Al Innis) is funded by ClimateWorks Foundation and Breakthrough Energy Foundation to support SHAs, local agencies, and owners
 - Agency projects should be eligible for IRA funding
 - Pre-construction, construction, and post-construction assistance available
- Established a Reduced Carbon Concrete Consortium (RC³) for agencies and industry partners
 - Looking for participants

Questions?

Thanks

Thomas Van Dam, Ph.D., P.E., FACI Principal

Wiss, Janney, Elstner Associates, Inc.

Engineers | Architects | Materials Scientists 330 Pfingsten Road, Northbrook, Illinois 60062 tel 847.272.7400 | fax 847.291.9599 direct 847.753.6345 | mobile 775.527.2524 www.wje.com tvandam@wje.com

